
Evolution of Test and Code Via Test-First Design
Jeff Langr

March 2001

Author
Jeff Langr is a consultant with Ob

development teams in XP and training in
software development experience, includ
development. Langr is the author of the b

Acknowledgments
Bob Koss and Bob Martin, of Obj

Anderson provided pair programming tim

Test-first design is one of the m
requires that programmers do not write
unit test. By definition, this technique re
volume of existing code that cannot be
how test coverage and code quality is im

Approach: An example of code
presented. Next, the suite of tests writte
author iterates through the exercise of c
contrast between both versions of the pr
the improvements generated by virtue o

Specifics: The code body repres
common utility useful for reading files
built in Java over two years ago. Unit te
(http://www.junit.org) as the testing fra
from scratch, using JUnit as the driver f
initial code and subsequent tests wholes
approach, test by test.
Abstract
andatory practices of Extreme Programming (XP). It
any production code until they have first written a
sults in code that is testable, in contrast to the large

easily tested. This paper demonstrates by example
proved through the use of test-first design.

written without the use of automated tests is
n for this legacy body of code is shown. Finally, the
ompletely rebuilding the code, test by test. The
oduction code and the tests is used to demonstrate
f employing test-first design.
ents a CSV (comma-separated values) file reader, a
in the standard CSV format. The initial code was
sts for this code were written recently, using JUnit

mework. The CSV reader was subsequently built
or writing the tests first. The paper presents the
ale. The test-first code is presented in an iterative
ject Mentor, Inc., responsible for mentoring
 OO and XP practices. Jeff has over eighteen years
ing close to ten years experience in object-oriented
ook Essential Java Style (Prentice Hall, 1999).

ect Mentor, provided useful feedback on the paper. Ann
e.

http://www.junit.org/

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 2

Introduction
In 1998, I was a great Java programmer. I wrote great Java code. Evidence of my great

code was the extent to which I thought it was readable and easily maintained by other
developers. (Never mind that the proof of this robustness was nonexistent, the distinction of
greatness being held purely in my head.) I took pride in the great code I wrote, yet I was humble
enough to realize that my code might actually break, so I typically wrote a small body of semi-
automatic tests subsequent to building the code.

Since 1998, I have been exposed to Extreme Programming (XP). XP is an “agile,” or
lightweight, development process designed by Kent Beck. Its chief focus is to allow continual
delivery of business value to customers, via software, in the face of uncertain and changing
requirements – the reality of most development environments. XP achieves this through a small,
minimum set of simple, proven development practices that complement each other to produce a
greater whole. The net result of XP is a development team able to produce software at a
sustainable and consistently measurable rate.

One of the practices in XP is test-first design (TfD). Adopting TfD means that you write
unit-level tests for every piece of functionality that could possibly break. It also means that these
tests are written prior to the code. Writing tests before writing code has many effects on the code,
some of which will be demonstrated in this paper.

The first (hopefully obvious) effect of TfD, is that the code ends up being testable –
you’ve already written the test for it. In contrast, it is often extremely difficult, if not impossible,
to write effective unit tests for code that has already been written without consideration for
testing. Often, due to the interdependencies of what are typically poorly organized modules,
simple unit tests cannot be written without large amounts of context.

Secondly, the process of determining how to test the code can be the more difficult task –
once the test is designed, writing the code itself is frequently simple. Third, the granularity of
code chunks written by a developer via TfD is much smaller. This occurs because the easiest
way to write a unit test is to concentrate on a small discrete piece of functionality. By definition,
the number of unit tests thus increases – having smaller code chunks, each with its own unit test,
implies more overall code chunks and thus more overall unit tests. Finally, the process of
developing code becomes a continual set of small, relatively consistent efforts: write a small test,
write a small piece of code to support the test. Repeat.

TfD also employs another important technique that helps drive the direction of tests: tests
should be written so that they fail first. Once a test has proven to fail, code is written to make the
test pass. The immediate effect of this technique is that testing coverage is increased; this too
will be demonstrated in the example section of this paper.

XP’s preferred enabling mechanism for TfD is XUnit, a series of open-source tools
available for virtually all OO (and not quite OO) languages and environments: Java, C++,
Smalltalk, Python, TCL, Delphi, Perl, Visual Basic, etc. The Java implementation, JUnit,
provides a framework on which to build test suites. It is available at http://www.junit.org. A test
suite is comprised of many test classes, each of which generally tests a single class of actual
production code. A test class contains many discrete test methods, which each establish a test
context and then assert actual results against expected results.

http://www.junit.org/

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 3

JUnit also provides a simple user interface that contains a progress bar showing the
success or failure of individual test methods as they are executed. Details on failed tests are
shown in other parts of the user interface. Figure 1 presents a sample JUnit execution.

Figure 1 – JUnit user interface
The key part of JUnit is that it is intended to produce Pavlovian responses: a green bar

signifies that all tests ran successfully. A red bar indicates at least one failure. Green = good, red
= bad. The XP developer quickly develops a routine around deriving a green bar in a reasonably
short period of time – perhaps 2 to 10 minutes. The longer it takes to get a green bar, the more
likely it is that the new code will introduce a defect. We can usually assume that the granularity
of the unit test was too large. Ultimately, the green bar conditioning is to get the developer to
learn to build tests for a smaller piece of functionality. Within this paper, references to “getting a
green bar” are related to the stimulus-response mechanism that JUnit provides.

Background
During my period of greatness in 1998, I wrote a simple Java utility class, CSVReader,

whose function was to provide client applications a simple interface to read and manipulate
comma-separated values (CSV) files. I have recently found reason to unearth the utility for
potential use in an XP environment.

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 4

However, XP doesn’t take just anybody’s great code. It insists that it come replete with
its corresponding body of unit tests. I had no such set of rigorous unit tests. In a vain attempt to
satisfy the XP needs, I wrote a set of unit tests against this body of code. The set of tests seemed
relatively complete and reasonable. But the code itself, I realized, was less than satisfying.

This revelation came about from attempting to change the functionality of the parsing.
Embedded double quotes should only be allowed in a field if they are escaped, i.e. \”. The
existing functionality allowed embedded double quotes without escaping (“naked” quotes),
which leads to some relatively difficult parsing code.

I had chosen to implement the CSVReader using a state machine. The bulk of the code, to
parse an individual line, resided in the 100+ line method columnsFromCSVRecord (which I had
figured on someday refactoring, of course). The attempt to modify functionality was a small
disaster: I spent over an hour struggling with the state machine code before abandoning it.

I chose instead to rebuild the CSVReader from scratch, fully using TfD, taking careful
note of the small, incremental steps involved. The last section of this paper presents these steps
in gory detail, explaining the rationale behind the development of the tests and corresponding
code. The next section neatly summarizes the important realizations from the detail section.

Realizations
Building Java code via TfD takes the following sequence:
• Design a test that should fail.
• Immediate failure may be indicated by compilation errors. Usually this is in the form

of a class or method that does not yet exists.
• If you had compilation errors, build the code to pass compilation.
• Run all tests in JUnit, expecting a red bar (test failure).
• Build the code needed to pass the test.
• Run all tests in JUnit, expecting a green bar (test success). Correct code as needed

until a green bar is actually received.
Building the code needed to pass the test is a matter of building only what is necessary. In

many cases, this may involve hard-coding return values from methods. This is a temporary
solution. The hard-coding is eliminated by adding another test for additional functionality. This
test should break, and thus require a solution that cannot be based on hard-coding.

Design will change. In the CSVReader example, my first approach was to use substring
methods to break the line up. This evolved to a StringTokenizer-based solution, then to its
current implementation using a state machine. The time required to go from design solution to
the next was minimal; I was able to maintain green bars every few minutes. The evolution of
tests quickly shaped the ultimate design of the class. The substring solution sufficed for a single
test against a record with two columns. But it lasted only minutes, until I designed a new test that
introduced records with multiple columns.

The initial attempt to introduce the complexity of the state machine was a personal failure
due to my deviation from the rules of TfD. I unsuccessfully wrote code for 20 minutes trying to
satisfy a single test. My course correction involved stepping back and thinking about the quickest

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 5

means of adding a test that would give me a green bar. This involved thinking about a state
machine at its most granular level. Given one state and an event, what should the new state be?
My test code became repetitions of proving out the state machine at this granularity.

The original code written in 1998 had 6 methods, the longest being well over 100 lines of
code. I wrote 15 tests after the fact for this code. I found it difficult to modify functionality in
this code. The final code had 23 methods, the longest being 18 source lines of code. I wrote 20
tests as part of building CSVReader via TfD.

Disclaimers
The CSVReader tests are a bit awkward, requiring that a reader be created with a

filename, even though the tests are in-memory (specifically the non-public tests). This suggests
that CSVReader is not designed well: fixing this would likely mean that CSVReader be modified
to take a stream in its constructor (ignoring it if necessary) instead of just a file.

I ended up testing non-interface methods in an effort to reduce the amount of time
between green bars. Is testing non-interface methods a code smell? It perhaps suggests that I
break out the state machine code into a separate class. My initial thought is that I’m not going to
need the separate class at this point. When and if I get to the point where I write some additional
code requiring a similar state machine, I will consider introducing a relevant pattern.

Some of the test methods are a bit large – 15 to 20 lines, with more than a couple
assertions. My take on test-first design is that each test represents a usable piece of functionality
added. I don’t have a problem with the larger test methods, then. Commonality should be
refactored, however. CSVReaderTest contains a few utility methods that make the individual
tests more concise.

Conclusions
Test-first design has a marked effect on both the resulting code and tests written against

that code. TfD promotes an approach of very small increments between receiving positive
feedback. Using this approach, my experiment demonstrates that the amount of code required to
satisfy each additional assertion is small. The time between increments is very brief; on average,
I spent 3-4 minutes between receiving green bars with each new assertion introduced.
Functionality is continually increasing at a relatively consistent rate.

TfD and incremental refactoring as applied to this example resulted in 33% more tests. It
also resulted in a larger number of smaller, more granular methods. Counting simple source lines
of code, the average method size in the original source is 25 lines. The average method size in
the TfD-produced source is 5 lines. Small method sizes can increase maintainability,
communicability, and extensibility of code. Going by average method size in this specific
example, then, TfD resulted in considerable improvement of code quality over the original code.
Method sized decreased by a factor of 5.

Maintainability of the code was proven by my last pass (Pass Q, below) at building the
CSVReader via TfD. The attempt to modify the original body of code to support quote escaping
was a failure, representing more than 20 minutes of effort after which time the functionality had
not been successfully added. The code built via TfD allowed for this same functionality to be
successfully added to the code in 10 minutes, half the time. (Granted, my familiarity with the

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 6

evolving code base may have added some to the expediency, but I was also very familiar with
the original code by virtue of having written several tests for it after the fact.)

TfD alone will not result in improved code quality. Refactoring of code on a frequent
basis is required to keep code easily maintainable. Having a body of tests that proves existing
functionality means that code refactoring can be performed with impunity.

The final conclusion I drew from this example is that TfD, coupled with good refactoring,
can evolve design rapidly. For the CSVReader, I quickly moved from a rudimentary string
indexing solution to a state machine, without the need to take what I would consider backward
steps. The amount of code replaced at each juncture was minimal, and perhaps even a necessary
part of design discovery, allowing development of the application to move consistently forward.

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 7

 TfD Detailed Example – The CSVReader Class
Origins
I have included listings of the code (CSVReader.java, circa 1998) as initially written,

without the benefit of test-first design (Tfd). I have also included the body of tests
(CSVReaderTest.java, 23-Feb-2001) written after the fact for the CSVReader code. These
listings appear at the end of this paper, due to their length. They are included for comparison
purposes. The remainder of the paper presents the evolution of CSVReader via test-first design.

JUnit Test Classes
Building tests for use with JUnit involves creation of separate test classes, typically one

for each class to be tested. By convention, the name of each test class is derived by appending
the word “Test” to the target class name (i.e. the class to be tested). Thus the test class name for
my CSVReader class is CSVReaderTest.

JUnit test classes extend from junit.framework.TestCase. The test class must provide a
constructor that takes as its parameter a string representing an arbitrary name for the test case;
this is passed to the superclass. The test class must contain at least one test method before JUnit
recognizes it as a test class. Test methods must be declared as

public void testMethodName()

where MethodName represents the unique name for the test. Test method names should be
descriptive and should summarize the functionality proven by the code contained within. The
following code shows a skeletal class definition for CSVReaderTest.

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 8

import junit.framework.*;
public class CSVReaderTest extends TestCase {

public CSVReaderTest(String name) {
super(name);

}
public void testAbilityToDoSomething() {

// ... code to set up test...
assert(conditional);

}
}

Subsequent listings of tests will assume this outline, and will show only the relevant test
method itself. Additional code, including refactorings and instance variables, will be displayed as
needed.

Getting Started
The initial test written against a class is usually something dealing with object

instantiation, or creation of the object. For my CSVReader class, I know that I want to be able to
construct it via a filename representing the CSV file to be used as input. The simplest test I can
write at this point is to instantiate a CSVReader with a filename string representing a non-
existent file, and expect it to throw an exception. testCreateNoFile() includes a little bit of
context setup: if there is a file with the bogus filename, I delete it so my test works.
public void testCreateNoFile() throws IOException {

String bogusFilename = "bogus.filename";
File file = new File(bogusFilename);
if (file.exists())

file.delete();
try {

new CSVReader(bogusFilename);
fail("expected IO exception on nonexistent CSV file");

}
catch (IOException e) {

pass();
}

}
void pass() {}

I expect test failure if I do not get an IOException. Note my addition of the no-op method
pass(). I add this method to allow the code to better communicate that a caught IOException
indicates test success.

 It is important to note that there is no CSVReader.java source file yet. I write the
testCreateNoFile() method, then compile it. The compilation fails as expected – there is no
CSVReader class. I iteratively rectify the situation: I create an empty CSVReader class
definition, then recompile CSVReaderTest. The recompile fails: wrong number of arguments in

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 9

constructor, IOException not thrown in the body of the try statement. Working through
compilation errors, I end up with the following code1:

import java.io.IOException;
public class CSVReader {

public CSVReader(String filename) throws IOException {
}

}

This code compiles fine. I fire up JUnit and tell it to execute all the tests in
CSVReaderTest. JUnit finds one test, testCreateNoFile(). (JUnit uses Java reflection
capabilities and assumes all methods named with the starting string “test” are to be executed as
tests.) As I expect, I see a red bar and the message “expected IO exception on nonexistent CSV
file.” My task is to now write the code to fix the failure. It ends up looking like this:

import java.io.*;
public class CSVReader {

public CSVReader(String filename) throws IOException {
throw new IOException();

}
}

I execute JUnit again, and get a green bar. I have built just enough code, no more, to get
all of my tests (just one for now) to pass.

Pass A – Test Against an Empty File
I need CSVReader to be able to recognize valid input files. I want a test that proves

CSVReader does not throw an exception if the file exists. I code testCreateWithEmptyFile()
to build an empty temporary file.
public void testCreateWithEmptyFile() throws IOException {

String filename = "CSVReaderTest.tmp.csv";
BufferedWriter writer =

new BufferedWriter(new FileWriter(filename));
writer.close();
CSVReader reader = new CSVReader(filename);
new File(filename).delete();

}

This test fails, since the constructor of CSVReader for now is always throwing an
IOException. I modify the constructor code:

public CSVReader(String filename) throws IOException {
if (!new File(filename).exists())

throw new IOException();
}

This passes. I want to extend the semantic definition of an empty file, however. I
introduce the hasNext() method as part of the public interface of CSVReader. A CSVReader
opened on an empty file should return true if this method is called. I add an assertion:

assert(!reader.hasNext());

1 By now you’ve hopefully noticed that test code appears on the left-hand side of the page, and actual code

appears on the right-hand side of the page. This is a nice convention that is used by William Wake at his web site,
XP123.com.

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 10

after the construction of the CSVReader object, so that the complete test looks like this:
public void testCreateWithEmptyFile() throws IOException {

String filename = "CSVReaderTest.tmp.csv";
BufferedWriter writer =

new BufferedWriter(new FileWriter(filename));
writer.close();
CSVReader reader = new CSVReader(filename);
assert(!reader.hasNext());
new File(filename).delete();

}

The compilation fails (“no such method hasNext()”). I build an empty method with the
signature public boolean hasNext(). The question is, what do I return from it? The answer is,
a value that will make my test break. Since the test asserts that calling hasNext() against the
reader will return false, the simplest means of getting the test to fail is to have hasNext() return
true. I code it; my compile is finally successful.

As I expect, JUnit gives me a red bar upon running the tests. For now, all that is involved
in fixing the code is changing the return value of hasNext() from true to false – green bar! The
resultant code is shown below.

import java.io.*;
public class CSVReader {

public CSVReader(String filename) throws IOException {
if (!new File(filename).exists())

throw new IOException();
}
public boolean hasNext() {

return false;
}

}

Note that the test and corresponding code took under five minutes to write. I wrote just
enough code to get my unit test to work – nothing more. This is in line with the XP principle that
at any given time, there should be no more functionality than what the tests specify. Or as it’s
better known, “Do The Simplest Thing That Could Possibly Work.” Or as it’s more concisely
known, “DTSTTCPW.” Adherence to this principle during TfD, coupled with constantly keeping
code clean via refactoring, is what allows me to realize green bars every few minutes. You will
see some examples of refactoring in later tests.

Pass B –Read Single Record
The impetus to write more code comes by virtue of writing a test that fails, usually by

asserting against new, yet-to-be-coded functionality. This can often be a thought-provoking,
difficult task.

One such way of breaking the tests against CSVReader is to create a file with a single
record in it, then use the hasNext() method to determine if there are available records. This
should fail, since we hard-coded hasNext() to return false for the last test (Pass A). The new test
method is named testReadSingleRecord().
public void testReadSingleRecord() throws IOException {

String filename = "CSVReaderTest.tmp.csv";
BufferedWriter writer =

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 11

new BufferedWriter(new FileWriter(filename));
writer.write("single record", 0, 13);
writer.write("\r\n", 0, 2);
writer.close();
CSVReader reader = new CSVReader(filename);
assert(reader.hasNext());
reader.next();
assert(!reader.hasNext());
new File(filename).delete();

}

If I try to fix the code by returning true from hasNext(), then testCreate() fails. At
this point I will have to code some logic to make testReadSingleRecord() work, based on
working with the actual file created in the test.

The solution has the constructor of CSVReader creating a BufferedReader object against
the file represented by the filename parameter. The first line of the reader is immediately read in
and stored in an instance variable, _currentLine. The hasNext() method is altered to return
true if _currentLine is not null, false otherwise.

Proving the correct operation of the hasNext() method does not mean
testReadSingleRecord() is complete. The semantics implied by the name of the test method
are that we should be able to read a single record out of my test file. To complete the test, I
should be able to call a method against CSVReader that reads the next record, and then use
hasNext() to ensure that there are no more records available.

The method name I chose for reading the next record is next() – so far, CSVReader
corresponds to the java.util.Iterator interface. Compilation of the test breaks since there is not yet
a method named next() in CSVReader. The method is added with an empty body. This results
in JUnit throwing up a red bar for the test. The final line of code is added to the next() method:

_currentLine = _reader.readLine();

This results in the line being read from the file and stored in the instance variable
_currentLine. Recompiling and re-running the JUnit tests results in a green bar.

import java.io.*;
public class CSVReader {

public CSVReader(String filename) throws IOException {
if (!new File(filename).exists())

throw new IOException();
_reader = new BufferedReader(

new java.io.FileReader(filename));
_currentLine = _reader.readLine();

}
public boolean hasNext() {

return _currentLine != null;
}
public void next() throws IOException {

_currentLine = _reader.readLine();
}

private BufferedReader _reader;
private String _currentLine;
}

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 12

Pass C – Refactoring
One of the rules in XP is that there should be no duplicate lines of code. As soon as you

recognize the duplication, you should take the time to refactor it. The longer between refactoring
intervals, the more difficult it will be to refactor it. Once again, XP is about moving forward
consistently through small efforts. Some specific techniques for refactoring code are detailed in
Martin Fowler’s book, Refactoring: Improving the Design of Existing Code (Addison Wesley
Longman, Inc., 1999, Reading, Massachusetts). The chief goal of refactoring is to ensure that the
current code always has the optimal, simplest design.

Note that there is currently some duplicate code in both CSVReaderTest and CSVReader.
Time for some refactoring. In CSVReader, the line of code:

_currentLine = _reader.readLine();

appears twice, so it is extracted into the new method readNextLine:
import java.io.*;
public class CSVReader {

public CSVReader(String filename) throws IOException {
if (!new File(filename).exists())

throw new IOException();
_reader = new BufferedReader(

new java.io.FileReader(filename));
readNextLine();

}
public boolean hasNext() {

return _currentLine != null;
}
public void next() throws IOException {

readNextLine();
}
void readNextLine() throws IOException {

_currentLine = _reader.readLine();
}

private BufferedReader _reader;
private String _currentLine;
}

Within CSVReaderTest, the two lines required to create the BufferedWriter object are
refactored to the setUp() method. setUp() is a method that is executed by the JUnit framework
prior to each test method. There is also a corresponding tearDown() method that is executed
subsequent to the execution of each test method. I modify the tearDown() method to include a
line of code to delete the temporary CSV file created by the test.

I extract the two lines to close the writer and create a new method
getReaderAndCloseWriter(). The new test methods, new instance variables, and modified
methods are shown in the following listing.
public void setUp() throws IOException {

filename = "CSVReaderTest.tmp.csv";
writer = new BufferedWriter(new FileWriter(filename));

}
public void tearDown() {

new File(filename).delete();

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 13

}
public void testCreateWithEmptyFile() throws IOException {

CSVReader reader = getReaderAndCloseWriter();
assert(!reader.hasNext());

}
public void testReadSingleRecord() throws IOException {

writer.write("single record", 0, 13);
writer.write("\r\n", 0, 2);
CSVReader reader = getReaderAndCloseWriter();
assert(reader.hasNext());
reader.next();
assert(!reader.hasNext());

}
CSVReader getReaderAndCloseWriter() throws IOException {

writer.close();
return new CSVReader(filename);

}
private String filename;
private BufferedWriter writer;

Pass D – Read Single Record, continued
The test method testReadSingleRecord is incomplete. I’m building a CSV reader. I

want to ensure that it is able to return the list of columns contained in each record. For a single
record with no commas anywhere, I should be able to get back a list that contains one column.
The columns should be returned upon the call to next(), so my code should look like:

List columns = reader.next();

The corresponding assertion is:
assertEquals(1, columns.size());

I insert these two lines in testReadSingleRecord:
public void testReadSingleRecord() throws IOException {

writer.write("single record", 0, 13);
writer.write("\r\n", 0, 2);
CSVReader reader = getReaderAndCloseWriter();
assert(reader.hasNext());
List columns = reader.next();
assertEquals(1, columns.size());
assertEquals("single record", columns.get(0));
assert(!reader.hasNext());

}

and compile. The failed compile forces me to modify next() to return a java.util.List object. For
now, to get the compile to pass, I have next() simply return a new ArrayList object. Running
JUnit results in a red bar since the size of an empty ArrayList is not 1. I modify next() to add an
empty string to the ArrayList before it is returned. JUnit now gives me a green bar.

Now I need to ensure that the single column returned from next() contains the data I
expect (“single record”):

assertEquals("single record", columns.get(0));

This fails, as expected, so instead of adding an empty string to the return ArrayList, I add the
string “single record.” I get a green bar. Here’s the modified next() method:

public List next() throws IOException {

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 14

readNextLine();
List columns = new ArrayList();
columns.add("single record");
return columns;

}

On the surface, these steps seem unnecessary and even ridiculous. Why am I creating
hard-coded solutions? XP promotes the concept that we should build just enough software at any
given time to get the job done: DTSTTCPW. The code I have written is just enough to satisfy the
tests I have designed. Functionality is added by creating tests to demonstrate that the code does
not yet meet that additional desired functionality. Code is then written to provide the missing
functionality. The baby steps taken allow for a more consistent rate in delivering additional
functionality.

Pass E – Read Two Records
To break testReadSingleRecord() I can write two records, each with different data, to

the CSV file. While writing testReadTwoRecords, I had to recode the nasty pairs of lines
required to write each string to the BufferedWriter. I decided to factor that complexity out into
the method writeln. I subsequently went back and modified the code in
testReadSingleRecord() to also use the utility method writeln.
public void testReadTwoRecords() throws IOException {

writeln("record 1");
writeln("record 2");
CSVReader reader = getReaderAndCloseWriter();
reader.next();
List columns = reader.next();
assertEquals("record 2", columns.get(0));

}
// ...
void writeln(String string) throws IOException {

writer.write(string, 0, string.length());
writer.write("\r\n", 0, 2);

}

In order to fix this broken test scenario, I could go on and keep storing data in the
ArrayList, but that would be repeating myself. It’s time to write some real code.

To get things to work, the List of columns in the next() method is populated with
_currentLine. Note that the contents of _currentLine must be used before they are replaced
with the next line; i.e., the columns are populated before the call to readNextLine().

public List next() throws IOException {
List columns = new ArrayList();
columns.add(_currentLine);
readNextLine();
return columns;

}

Pass F – Two Columns
I’m now at the point where I want to start getting into the CSV part of things. I build

testTwoColumns(), which tests against a single record with an embedded comma. I expect to

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 15

get two columns in return, each with the appropriate string data. The test breaks since I am
currently assuming that the entire line is a single column.
public void testTwoColumns() throws IOException {

writeln("column 1,column 2");
CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(2, columns.size());
assertEquals("column 1", columns.get(0));
assertEquals("column 2", columns.get(1));

}

To get my green bar, the "simplest thing that could possibly work" is to use the java.lang.String
method substring to determine the location of any existing comma. I can write that code:

public List next() throws IOException {
List columns = new ArrayList();
int commaIndex = _currentLine.indexOf(",");
if (commaIndex == -1)

columns.add(_currentLine);
else
{

columns.add(_currentLine.substring(0, commaIndex));
columns.add(_currentLine.substring(commaIndex + 1));

}
readNextLine();
return columns;

}

Pass G – Multiple Columns
Breaking a line into two columns is simple enough. A test to see if a line can be split into

three or more columns fails.
public void testMultipleColumns() throws IOException {

writeln("column 1,column 2,column 3");
CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(3, columns.size());
assertEquals("column 1", columns.get(0));
assertEquals("column 2", columns.get(1));
assertEquals("column 3", columns.get(2));

}

Trying to extend the current substring solution ends up being too complex. Using a
StringTokenizer to split columns on a comma boundary is an easy, elegant solution.

public List next() throws IOException {
List columns = new ArrayList();
StringTokenizer tokenizer =

new StringTokenizer(_currentLine, ",");
while (tokenizer.hasMoreTokens())

columns.add(tokenizer.nextToken());
readNextLine();
return columns;

}

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 16

I had only spent a few minutes on the substring-based solution, and it worked for the time
being, so I don’t consider its departure as the mark of a poor initial design decision.

Pass H – State Machine
I write testCommaInDoubleQuotes() to allow CSVReader to treat commas as data, not

delimiters, if they appeared in a column flanked by double quotes.
public void testCommaInDoubleQuotes() throws IOException {

writeln("\"column with a , (comma)\",column 2");
CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(2, columns.size());
assertEquals("column with a , (comma)", columns.get(0));
assertEquals("column 2", columns.get(1));

}

After thinking for a minute, I realize that the StringTokenizer solution is going to be too
difficult to go further with, if even feasible at all. Instead I come up with the idea of a simple
state machine, just like in my 1998 solution.

I work on the state machine code after sketching a quick state diagram. It takes about 20
minutes, far longer than I expect, and far too long without any feedback. I make a couple
transliteration errors between the table and the code, thus requiring some debugging steps. I
decide that my approach – to not build the state code incrementally – is in error. The code I am
building to meet the requirements of the state diagram is looking like the old code I wrote. I have
one large, ugly method.

At this point I choose to start over again, deleting the state code and trying to see how
quickly I can get to a green bar. What this means, though, is that I have to back up and comment
out testCommaInDoubleQuotes(), adding instead incremental tests that interact with non-
interface methods2.

The simplest state machine to build at this point is one that accepts a single word. This
state machine is detailed in Table 1.

Table 1
State Event Actions New State
<init> delim
delim any char append char inWord
inWord any char append char
inWord end of string (eos) writeWord <fini>

2 The term non-interface methods is a semantic definition, and indicates methods that are not part of the

primary client interface. By converse definition, interface methods are methods that I expect interested clients to
interact with – the published behavior per a UML diagram. In Java, if tests reside in the same package as the tested
code, the access specifier for these methods is package (default). If the tests reside in a different package than the
tested code, the non-interface methods must be designated using the Java keyword public.

Technically, non-interface methods become part of the interface, since the test code becomes an interested
client.

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 17

The easiest way to get going, then, is to track the state of a single word, character by
character. I build testStateOneWord() to asserts against the initial state of a CSVReader:
public void testStateOneWord() throws IOException {

CSVReader reader = getReaderAndCloseWriter();
assertEquals(CSVReader.stateDelim, reader.getState());

}

To support this in code, I create a new method with package access, getState(), and
hardcode its return value, stateDelim.

int getState() {
return stateDelim;

}
final static int stateDelim = 0;

I add a second assertion to build the concept of a current word, which should be empty at
this point since I have generated no events:
assertEquals("", reader.getCurrentWord());

Passing this test involves adding a new method that for now simply returns the empty
string.

So how do I track state for given input? Throwing character events at the reader should
work. I design the interface into CSVReader to be a method, charEvent, that takes a single
character as its parameter.

My first assertion, assuming a test word “test”, is to throw the single character ‘t’ at the
CSVReader object and make sure that my current state is “inWord,” per my state table.
reader.charEvent('t');
assertEquals(CSVReader.stateInWord, reader.getState());

This requires me to add the constant to CSVReader representing the new state. Making
the code work means storing the current state as an instance variable (_state), initializing it to
stateDelim, and changing the state to stateInWord upon the receiving a charEvent message.

int getState() {
return _state;

}
void charEvent(char ch) {

_state = stateInWord;
}
private int _state = stateDelim;
final static int stateInWord = 1;

Next, I loop through the characters in the rest of the test word, sending the appropriate
charEvent for each. I send the end of string event, which represents a new method. I then assert
that my current word is the same as my test word. The complete test method now looks like:
public void testStateOneWord() throws IOException {

CSVReader reader = getReaderAndCloseWriter();
assertEquals(CSVReader.stateDelim, reader.getState());
assertEquals("", reader.getCurrentWord());
reader.charEvent('t');
assertEquals(CSVReader.stateInWord, reader.getState());
String testWord = "test";
for (int i = 1; i < testWord.length(); i++)

reader.charEvent(testWord.charAt(i));
reader.endOfStringEvent();

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 18

assertEquals("test", reader.getCurrentWord());
}

Fixing this failing test is easy: I add an instance variable _currentWord, initialize it to
the empty string (“”), and have endOfStringEvent set _currentWord to the string “test”
explicitly. The assertion is that getCurrentWord() returns the expected word “test” when all is
done. Hardcoding makes it so. The new/modified CSVReader code:

String getCurrentWord() {
return _currentWord;

}
void endOfStringEvent() {

_currentWord = "test";
}
private String _currentWord = "";

Note that I have not even touched the next() method – I am testing CSVReader’s ability
to maintain my state irrespective of the functionality in next().

Code Smells
To me and others (including reviewers of this paper), testing against non-interface

methods is a code smell – a hint that there is something bad about the code. Adding tests against
package methods such as charEvent and getCurrentWord() is such a hint. I am no longer
testing against the interface of CSVReader, I am testing against its specific current
implementation. This means that the tests will need to be rewritten as the implementation
changes.

Ultimately, the smell indicates that the complex state code should be broken into a
separate class, perhaps a generic state machine implementation. The new class would have its
own set of tests against its public interface. However, my initial reaction is that I’m not going to
need the new class for the time being. The effort to split the tests and code out will be roughly
the same now or later, so per XP, I will defer the design decision until I really need it.

Pass I – Two Columns
Tracking two columns ended up being the most involved test in the completed

application. Building this iteratively took perhaps 20 minutes, but I added my assertions in
incrementally, ensuring that I was getting a green bar every few minutes.

The updated state table appears as Table 2.

Table 2
State Event Actions New State
<init> delim
delim any char append char inWord
inWord , writeWord,

newWord
delim

inWord any other char append char
inWord end of string (eos) writeWord <fini>

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 19

Building testStateTwoColumns() assertion by assertion is similar to the technique in
Pass H. I create a test input string that should break into two columns. I loop through the string
until I receive a comma. I assert that the current column contains the first word in the input
string. After sending the comma charEvent, I assert that the new state is stateDelim. I add a
new non-interface method, getCurrentLineColumns(), to ensure that each word is added to a
list of columns (that will ultimately be returned by the next() method). I loop through the rest of
the input string, adding assertions as appropriate.

Rather than detail the code evolution here, I have added comments to the test code below.
I generally would not leave these comments in the released test. Note that I did a minor
refactoring: I decided I didn’t care for the term term “word” when I really meant “column.” I
modified testStateOneWord() and testStateTwoColumns() accordingly to refer to a
currentColumn instead of a currentWord.
public void testStateTwoColumns() throws IOException {

String testInput = "word1,word2";
CSVReader reader = getReaderAndCloseWriter();
int commaIndex = testInput.indexOf(",");
for (int i = 0; i < commaIndex; i++)

reader.charEvent(testInput.charAt(i));

// fixing this means adding a StringBuffer (_currentBuffer)
// to track the characters as they are appended.
// getCurrentWord, instead of returning _currentWord,
// returns _currentBuffer.toString().
assert(reader.getCurrentColumn().equals("word1"));

reader.charEvent(',');
// adding the next assertion means adding in an if
// statement in charEvent to manage the distinction
// between stateDelim and stateInWord
assert(reader.getState() == CSVReader.stateDelim);

// we also want to make sure the "write word" action
// takes place. getColumns for now just hardcodes a
// list with the single entry "word1".
List columns = reader.getCurrentLineColumns();
assertEquals(1, columns.size());

reader.charEvent(testInput.charAt(commaIndex + 1));
assertEquals(CSVReader.stateInWord, reader.getState());
// this works. so we need a test that fails, instead

// the next assertion requires that _currentBuffer be
// cleared out, so we add a new method newWord() to
// blow away the buffer, when comma event is received
// in inWord state.
assertEquals("w", reader.getCurrentColumn());

// the next assertion works.
for (int i = commaIndex + 2; i < testInput.length(); i++)

reader.charEvent(testInput.charAt(i));
reader.endOfStringEvent();

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 20

assertEquals("word2", reader.getCurrentColumn());

// do we have our columns?
columns = reader.getCurrentLineColumns();
// to get the following to work, we have to make columns
// into an instance variable. In order to map to the state
// diagram, we also make a new method writeWord. writeWord
// gets the current word and adds it to the columns. The
// writeWord method must be called from
// charEvent->stateInWord->',' and also from endOfStringEvent.
// At this point, also, the instance variable _currentWord can
// be removed, along with any references to it.
// The contents of the columns are also tested, though both
// tests pass immediately.
assertEquals(2, columns.size());
assertEquals("word1", columns.get(0));
assertEquals("word2", columns.get(1));

}

The modified/new CSVReader code resulting from the incremental creation of
testStateTwoColumns() is shown below.

String getCurrentColumn() {
return _columnBuffer.toString();

}
List getCurrentLineColumns() {

return _columns;
}
void charEvent(char ch) {

if (_state == stateInWord) {
if (ch == ',') {

writeWord();
newWord();
_state = stateDelim;

}
else

append(ch);
}
else

if (_state == stateDelim) {
_state = stateInWord;
append(ch);

}
}
void writeWord() {

_columns.add(getCurrentColumn());
}
void newWord() {

_columnBuffer.delete(0, _columnBuffer.length());
}
void append(char ch) {

_columnBuffer.append(ch);
}
void endOfStringEvent() {

_currentColumn = "test";
writeWord();

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 21

}
private String _currentColumn = "";
private StringBuffer _columnBuffer = new StringBuffer();
private List _columns = new ArrayList();

Pass J – Plugging In The State Machine
Now that I have confidence enough in the state machine to be able to pass the above test

situations, I need to hook the state stuff up to the existing framework. But how do I write a test
that fails first? The test method testStateWithRead()writes a single record and calls the
next() method against the CSVReader.
public void testStateWithRead() throws IOException {

writeln("record 1,x");
CSVReader reader = getReaderAndCloseWriter();
reader.next();
List columns = reader.getCurrentLineColumns();
assertEquals(2, columns.size());

}

The assertion that fails initially is to test the non-interface getCurrentLineColumns()
and ensure that it returns a java.util.List containing two columns. This will force us to hook the
state machine code into the next() method.

Hooking in the state machine code involves writing a for loop in next() to send each
character of _currentLine as character events, followed by the endOfStringEvent. At this
point, we should recognize the duplicate code involved in parsing through the string, and
subsequently delete the string tokenizing technique in a refactoring of sorts. Doing so, however,
breaks testReadTwoRecords, so we must fix CSVReader by adding code to clear the columns
array and create a new word.

public List next() throws IOException {
_columns.clear();
newWord();
for (int i = 0; i < _currentLine.length(); i++)

charEvent(_currentLine.charAt(i));
endOfStringEvent();
readNextLine();
return getCurrentLineColumns();

}

Pass K – Comma In Double Quotes
I retry my testCommaInDoubleQuotes() (Pass H), but still fails. Instead of trying to fix

it wholesale, I approach the solution incrementally. I first update the state machine table to
represent the double-quote functionality I am trying to add (Table 3).

Table 3
State Event Actions New State
<init> delim
delim “ inQuoteWord
delim any other char append char inWord

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 22

State Event Actions New State
inWord , writeWord,

newWord
delim

inWord any other char append char
inWord end of string (eos) writeWord <fini>
inQuoteWord “ writeWord,

newWord
quoteInQuoteWord

inQuoteWord any other char
(including ,)

append char

quoteInQuoteWord , delim
quoteInQuoteWord eos <fini>

I comment testCommaInDoubleQuotes() once more, and create a new test against state,
testDoubleQuotes(). Again, this test is built iteratively, assert by assert.
public void testDoubleQuotes() throws IOException {

// example: "A,a",b
CSVReader reader = getReaderAndCloseWriter();
reader.charEvent('"');
assertEquals(CSVReader.stateInQuoteWord, reader.getState());
reader.charEvent('A');
reader.charEvent(',');
assertEquals(CSVReader.stateInQuoteWord, reader.getState());
reader.charEvent('a');
reader.charEvent('"');
assertEquals(

CSVReader.stateQuoteInQuoteWord, reader.getState());
assertEquals("A,a", reader.getCurrentLineColumns().get(0));
reader.charEvent(',');
assertEquals(CSVReader.stateDelim, reader.getState());
reader.charEvent('b');
reader.endOfStringEvent();
assertEquals("b", reader.getCurrentLineColumns().get(1));

}

While building testDoubleQuotes(), I note that the code in charEvent is beginning to
get confusing. I choose to refactor now, before it’s too late to do so easily. I reorganize things
based on character events. Each special character is treated now as a separate method.

void charEvent(char ch) {
switch (ch) {

case ',': commaEvent(); break;
case '"': doubleQuoteEvent(); break;
default :

defaultCharEvent(ch); break;
}

}
void commaEvent() {

switch (_state) {
case (stateInWord):

writeWord();
newWord();
_state = stateDelim;
break;

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 23

case (stateDelim):
_state = stateInWord;
append(',');
break;

case (stateInQuoteWord):
append(',');
break;

case (stateQuoteInQuoteWord):
_state = stateDelim;
break;

}
}
void doubleQuoteEvent() {

switch (_state) {
case stateDelim:

_state = stateInQuoteWord;
break;

case stateInWord:
append('"');
break;

case stateInQuoteWord:
_state = stateQuoteInQuoteWord;
writeWord();
newWord();
break;

}
}
void defaultCharEvent(char ch) {

switch (_state) {
case stateDelim:

_state = stateInWord;
append(ch);
break;

case stateInWord:
append(ch);
break;

case stateInQuoteWord:
append(ch);
break;

}
}
final static int stateInQuoteWord = 2;
final static int stateQuoteInQuoteWord = 3;

Once I get testDoubleQuotes() working, I uncomment testCommaInDoubleQuotes()
and discover that it now works! I could choose to eliminate one of the two tests at this point, but
I feel that the different approaches taken to testing the same functionality – one more “black
box” than “white box” – provides better test coverage.

Pass L – More Functionality
Now that the tough part is done, I choose to add some functionality. Comment lines need

to be supported. The new test method testComment() drives the addition of new functionality:
public void testComment() throws IOException {

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 24

writeln("line 1");
writeln("# comment line");
writeln("line 2");
CSVReader reader = getReaderAndCloseWriter();
reader.next();
List columns = reader.next();
assertEquals("line 2", columns.get(0));

}

The corresponding code modifications:
void readNextLine() throws IOException {

do
_currentLine = _reader.readLine();

while (_currentLine != null && isCommentLine(_currentLine));
}
boolean isCommentLine(String line) {

return line.charAt(0) == '#';
}

While writing testComment(), I mentally note the possibility for an IndexOutOfBounds
exception to be thrown if a line read is empty. Rather than write the code that I think might be
necessary, I decide to write a test (testEmptyLine()) to determine if this is indeed the case.
public void testEmptyLine() throws IOException
{

try {
writeln("");
CSVReader reader = getReaderAndCloseWriter();
reader.next();
pass();

}
catch (Exception e) {

fail(e.getMessage());
}

}

Sure enough, the code throws an exception. I modify the new isCommentLine() method
in CSVReader to handle the special case:

boolean isCommentLine(String line) {
if (line.length() == 0)

return false;
return line.charAt(0) == '#';

}

Pass M – Still More Ideas
What if the entire file consists only of comments? Do we get an error? I add

testOnlyComments(), which passes.
public void testOnlyComments() throws IOException {

writeln("# ...");
CSVReader reader = getReaderAndCloseWriter();
assert(!reader.hasNext());

}

Not a great idea for a test, since it passed, but I coded it, and I don’t have a heartache
about leaving it in.

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 25

I’m pretty sure that reading too many records via the next() method will cause an
exception, but probably not the one I want. I code testEOF() to call reader.next() twice,
expecting that the second call generates an IOException.
public void testEOF() throws IOException {

writeln("x");
CSVReader reader = getReaderAndCloseWriter();
reader.next();
try {

reader.next();
fail("should have gotten exception");

}
catch (IOException e) {

pass();
}

}

It doesn’t; instead, a NullPointerException is thrown. I modify next() to throw an IOException
if the current line is null. After that works, I do a minor refactoring since my next() method is
getting large and doing far too many different things. The new parse(String) method comes
about via an Extract Method refactoring against next().

public List next() throws IOException {
if (_currentLine == null)

throw new IOException("Read past end of file in next()");
parse(_currentLine);
readNextLine();
return getCurrentLineColumns();

}
void parse(String line) {

_columns.clear();
newWord();
for (int i = 0; i < line.length(); i++)

charEvent(line.charAt(i));
endOfStringEvent();

}

Pass N – Whitespace
My current CSVReader implementation does not account for leading and trailing spaces

accordingly. Spaces and tabs should be trimmed from both ends of a column, unless the spaces
appear within double-quote delimited columns. This requires a modified state diagram (Table 4).
The space events are now handled, and writeWord is replaced with the action writeTrimWord in
some circumstances.

Table 4
State Event Actions New State
<init> delim
delim space, \t
delim “ inQuoteWord
delim any other char append char inWord
inWord comma writeTrimWord, delim

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 26

newWord
inWord any other char append char
inWord end of string (eos) writeTrimWord <fini>
inQuoteWord “ writeWord,

newWord
quoteInQuoteWord

inQuoteWord any other char
(including comma,
space, \t)

append char

quoteInQuoteWord comma delim
quoteInQuoteWord space, \t
quoteInQuoteWord eos <fini>

I create testStateWhitespace() to validate this table.
public void testStateWhitespace() throws IOException {

String testInput = " a ,\tb\t";
CSVReader reader = getReaderAndCloseWriter();

reader.charEvent(' ');
assertEquals(CSVReader.stateDelim, reader.getState());

reader.charEvent('a');
reader.charEvent(' ');
reader.charEvent(',');
List columns = reader.getCurrentLineColumns();
assertEquals("a", columns.get(0));

reader.charEvent('\t');
reader.charEvent('b');
reader.charEvent('\t');
reader.endOfStringEvent();
columns = reader.getCurrentLineColumns();
assertEquals("b", columns.get(1));

}

The resulting code:
void charEvent(char ch) {

switch (ch) {
case ',': commaEvent(); break;
case '"': doubleQuoteEvent(); break;
case ' ':
case '\t': whitespaceEvent(ch); break;
default: defaultCharEvent(ch); break;

}
}
void whitespaceEvent(char ch) {

if (_state == stateDelim)
;

else
defaultCharEvent(ch);

}
void commaEvent() {

switch (_state) {
case (stateInWord):

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 27

writeEndTrimWord();
newWord();
_state = stateDelim;
break;

case (stateDelim):
_state = stateInWord;
append(',');
break;

case (stateInQuoteWord):
append(',');
break;

case (stateQuoteInQuoteWord):
_state = stateDelim;
break;

}
}
void endOfStringEvent() {

if (_state == stateInWord)
writeEndTrimWord();

else
writeWord();

}
void writeEndTrimWord() {

_columns.add(endTrim(getCurrentColumn()));
}
String endTrim(String source) {

int i = source.length() - 1;
while (i > -1)

if (isWhitespace(source.charAt(i)))
i--;

else
break;

return source.substring(0, i + 1);
}
boolean isWhitespace(char ch) {

return ch == ' ' || ch == '\t';
}

Pass O – Double Quotes
I write the method testStateQuotes(), to ensure that whitespace and quotes were

handled properly. This is a bad deviation from plan, evidenced by the fact that all asserts in this
test pass on its first execution. In retrospect, I realize that this functionality was added back in
Pass N by virtue of coding the state table.
public void testStateQuotes() throws IOException {

// example string = " \" x, \" , \"y\" ";
CSVReader reader = getReaderAndCloseWriter();
sendCharEvents(reader, " \" x, \" ");
assertEquals(

CSVReader.stateQuoteInQuoteWord, reader.getState());
reader.charEvent(',');
List columns = reader.getCurrentLineColumns();
assertEquals(" x, ", columns.get(0));

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 28

sendCharEvents(reader, " \"y\" ");
reader.endOfStringEvent();
columns = reader.getCurrentLineColumns();
assertEquals("y", columns.get(1));

}
void sendCharEvents(CSVReader reader, String string) {

for (int i = 0; i < string.length(); i++)
reader.charEvent(string.charAt(i));

}

The more useful thing that comes out of writing this test is that I finally realize I am
writing duplicate test code. Many of the existing test methods call the charEvent method over
and over. I write the method sendCharEvents to take a CSVReader and a String as parameters.

Pass P – Empty Columns
I add testEmptyFields() to determine if empty columns are handled correctly.

public void testEmptyFields() throws IOException {
writeln("");
writeln(",");
writeln(",a,,,");
CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(1, columns.size());
assertEquals("", columns.get(0));
columns = reader.next();
assertEquals(2, columns.size());
columns = reader.next();
assertEquals(5, columns.size());

}

They are not. I modify the code in commaEvent() accordingly.
void commaEvent() {

switch (_state) {
case (stateInWord):

writeEndTrimWord();
newWord();
_state = stateDelim;
break;

case (stateDelim):
writeWord();
break;

case (stateInQuoteWord):
append(',');
break;

case (stateQuoteInQuoteWord):
_state = stateDelim;
break;

}
}

When a comma event was received while in stateDelim, I was previously changing the
state to stateInWord and appending the comma. The code now just calls the writeWord()
method.

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 29

I also add testUnmatchedDoubleQuoteIsAnError(). If the last column in a record
starts with a double quote, but another quote is not received before the end of the string, an error
should be thrown.
public void testUnmatchedDoubleQuoteIsAnError()

throws IOException {
writeln("\"jkl");
CSVReader reader = getReaderAndCloseWriter();
try {

reader.next();
fail("should have thrown IO exception");

}
catch (IOException e) {

pass();
}

}

The endOfStringEvent() method is modified accordingly. It now throws an
IOException, and therefore so must the parse method.

void parse(String line) throws IOException {
_columns.clear();
newWord();
for (int i = 0; i < line.length(); i++)

charEvent(line.charAt(i));
endOfStringEvent();

}
void endOfStringEvent() throws IOException {

switch (_state) {
case stateInWord:

writeEndTrimWord();
break;

case stateInQuoteWord:
throw new IOException(
"Badly formed record: quoted string not terminated");

default:
writeWord();
break;

}
}

Pass Q – Embedded Double Quotes
I wrote the initial CSVReader, allowing for quotes to be embedded within a column, just

as long as the string representing a column was flanked with double quotes. This ends up being a
poor definition, if not ill-defined in some situations.

My final test is to introduce completely new functionality: I want to allow double-quotes
within a column if they are escaped (i.e. prefixed with a backslash), a much simpler
implementation.

The state machine has to be modified slightly. Table 5 shows the relevant state
modifications only.

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 30

Table 5
State Event Actions New State
inQuoteWord \ escapeInQuote
escapeInQuote “ append “ inQuoteWord
escapeInQuote any other char append \

append char
inQuoteWord

I write testEmbeddedQuotes() to build the new state behavior.
public void testEmbeddedQuotes() throws IOException {

// example: " \" x \\\"y \",z" --> " x \"y" , z
CSVReader reader = getReaderAndCloseWriter();
sendCharEvents(reader, " " + quote + " x " + backslash);
assertEquals(CSVReader.stateEscapeInQuote, reader.getState());
reader.charEvent(quote);
assertEquals(CSVReader.stateInQuoteWord, reader.getState());
sendCharEvents(reader, "y " + quote + ",");
List columns = reader.getCurrentLineColumns();
assertEquals(" x \"y ", columns.get(0));

}
final char backslash = '\\';
final char quote = '\"';

I also write testEscapeCharNoQuote() to ensure that the backslash character is handled
correctly if not followed by a double-quote character.
public void testEscapeCharNoQuote() throws IOException {

// example: "\"a\b\"" --> "a\\b"
CSVReader reader = getReaderAndCloseWriter();
sendCharEvents(reader, quote + "a" + backslash + "b" + quote);
assertEquals(

CSVReader.stateQuoteInQuoteWord, reader.getState());
reader.endOfStringEvent();
List columns = reader.getCurrentLineColumns();
assertEquals("a" + backslash + "b", columns.get(0));

}

The code modifications to support these two tests are as follows. Time elapsed to add the
last two tests and corresponding code was about ten minutes.
void charEvent(char ch) {

switch (ch) {
case ',': commaEvent(); break;
case '"': doubleQuoteEvent(); break;
case ' ':
case '\t': whitespaceEvent(ch); break;
case '\\': backslashEvent(ch); break;
default: defaultCharEvent(ch); break;

}
}
void backslashEvent(char ch) {

if (_state == stateInQuoteWord)
_state = stateEscapeInQuote;

else
defaultCharEvent(ch);

}

mailto:JLangr@ObjectMentor.com

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 31

void doubleQuoteEvent() {
switch (_state) {

case stateDelim:
_state = stateInQuoteWord;
break;

case stateInWord:
append('"');
break;

case stateInQuoteWord:
_state = stateQuoteInQuoteWord;
writeWord();
newWord();
break;

case stateEscapeInQuote:
_state = stateInQuoteWord;
append('"');
break;

}
}
void defaultCharEvent(char ch) {

switch (_state) {
case stateDelim:

_state = stateInWord;
append(ch);
break;

case stateInWord:
append(ch);
break;

case stateInQuoteWord:
append(ch);
break;

case stateEscapeInQuote:
append('\\');
append(ch);
_state = stateInQuoteWord;
break;

}
}
final static int stateEscapeInQuote = 4;

Final Code
I chose not to include the final set of tests, for space considerations, since they are well

represented in the document above. If you are interested in a copy of CSVReaderTest.java,
please email me at JLangr@ObjectMentor.com.

The final CSVReader.java code is included, however.

CSVReader.java, built via TfD
import java.io.*;
import java.util.*;
public class CSVReader
{

public CSVReader(String filename) throws IOException {

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 32

if (!new File(filename).exists())
throw new IOException();

_reader = new BufferedReader(
new java.io.FileReader(filename));

readNextLine();
}
public boolean hasNext() {

return _currentLine != null;
}
public List next() throws IOException {

if (_currentLine == null)
throw new IOException(

"Read past end of file in next()");
parse(_currentLine);
readNextLine();
return getCurrentLineColumns();

}
void parse(String line) throws IOException {

_columns.clear();
newWord();
for (int i = 0; i < line.length(); i++)

charEvent(line.charAt(i));
endOfStringEvent();

}
void readNextLine() throws IOException {

do
_currentLine = _reader.readLine();

while (_currentLine != null &&
isCommentLine(_currentLine));

}
int getState() {

return _state;
}
String getCurrentWord() {

return _currentWord;
}
String getCurrentColumn() {

return _columnBuffer.toString();
}
List getCurrentLineColumns() {

return _columns;
}
void charEvent(char ch) {

switch (ch) {
case ',': commaEvent(); break;
case '"': doubleQuoteEvent(); break;
case ' ':
case '\t': whitespaceEvent(ch); break;
case '\\': backslashEvent(ch); break;
default: defaultCharEvent(ch); break;

}
}
void backslashEvent(char ch) {

if (_state == stateInQuoteWord)

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 33

_state = stateEscapeInQuote;
else

defaultCharEvent(ch);
}
void whitespaceEvent(char ch) {

if (_state == stateDelim)
;

else
defaultCharEvent(ch);

}
void commaEvent() {

switch (_state) {
case (stateInWord):

writeEndTrimWord();
newWord();
_state = stateDelim;
break;

case (stateDelim):
writeWord();
break;

case (stateInQuoteWord):
append(',');
break;

case (stateQuoteInQuoteWord):
_state = stateDelim;
break;

}
}
void doubleQuoteEvent() {

switch (_state) {
case stateDelim:

_state = stateInQuoteWord;
break;

case stateInWord:
append('"');
break;

case stateInQuoteWord:
_state = stateQuoteInQuoteWord;
writeWord();
newWord();
break;

case stateEscapeInQuote:
_state = stateInQuoteWord;
append('"');
break;

}
}
void defaultCharEvent(char ch) {

switch (_state) {
case stateDelim:

_state = stateInWord;
append(ch);
break;

case stateInWord:

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 34

append(ch);
break;

case stateInQuoteWord:
append(ch);
break;

case stateEscapeInQuote:
append('\\');
append(ch);
_state = stateInQuoteWord;
break;

}
}
void writeWord() {

_columns.add(getCurrentColumn());
}
void newWord() {

_columnBuffer.delete(0, _columnBuffer.length());
}
void append(char ch) {

_columnBuffer.append(ch);
}
void endOfStringEvent() throws IOException {

switch (_state) {
case stateInWord:

writeEndTrimWord();
break;

case stateInQuoteWord:
throw new IOException(
"Badly formed record: quoted string not terminated");

default:
writeWord();
break;

}
}
void writeEndTrimWord() {

_columns.add(endTrim(getCurrentColumn()));
}
String endTrim(String source) {

int i = source.length() - 1;
while (i > -1)

if (isWhitespace(source.charAt(i)))
i--;

else
break;

return source.substring(0, i + 1);
}
boolean isWhitespace(char ch) {

return ch == ' ' || ch == '\t';
}
boolean isCommentLine(String line) {

if (line.length() == 0)
return false;

return line.charAt(0) == '#';
}

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 35

private String _currentColumn = "";
private StringBuffer _columnBuffer = new StringBuffer();
private List _columns = new ArrayList();
private String _currentWord = "";
private BufferedReader _reader;
private String _currentLine;
private int _state = stateDelim;
final static int stateDelim = 0;
final static int stateInWord = 1;
final static int stateInQuoteWord = 2;
final static int stateQuoteInQuoteWord = 3;
final static int stateEscapeInQuote = 4;
}

CSVReader.java, circa 1998
import java.io.BufferedReader;
import java.io.IOException;
import java.util.List;
public class CSVReader {

CSVReader(String filename) throws IOException {
_reader = new BufferedReader(new java.io.FileReader(filename));
loadNextNonCommentLine();

}
public List next() throws IOException {

if (_line == null)
throw new IOException("Read past end of file");

List columns = columnsFromCSVRecord(_line);
loadNextNonCommentLine();
return columns;

}
public boolean hasNext() {

return _line != null;
}
void loadNextNonCommentLine() throws IOException {

do
_line = _reader.readLine();

while (_line != null && _line.startsWith(COMMENT_SYMBOL));
if (_line == null)

_reader.close();
}
List columnsFromCSVRecord(String line) throws IOException {

char state = stateINIT;
char ch;
int i = 0;
List tokens = new java.util.ArrayList();
StringBuffer buffer = new StringBuffer();
char[] charArray = line.toCharArray();
while (i < charArray.length) {

ch = charArray[i++];
switch (state) {

case stateINIT:
switch (ch) {

case '"':
buffer.append(ch);

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 36

state = stateQUOTED_DATA;
break;

case ',':
state = stateNEW_TOKEN;
tokens.add(clean(buffer));
buffer = new StringBuffer();
break;

case '\t': case ' ':
break;

case '#':
state = stateCOMMENT;
break;

default:
state = stateDATA;
buffer.append(ch);
break;

}
break;

case stateCOMMENT:
break;

case stateQUOTED_DATA:
switch (ch) {

case '"':
buffer.append(ch);
state = stateQUOTE_IN_QUOTED_DATA;
break;

default:
buffer.append(ch);
break;

}
break;

case stateQUOTE_IN_QUOTED_DATA:
switch (ch) {

case '"':
state = stateQUOTED_DATA;
break;

case ',':
state = stateNEW_TOKEN;
tokens.add(clean(buffer));
buffer = new StringBuffer();
break;

case ' ': case '\t':
break;

case '#':
tokens.add(clean(buffer));
state = stateCOMMENT;
break;

default:
throw new IOException(

"badly formed CSV record:" + line);
}
break;

case stateDATA:
switch (ch) {

case '#':

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 37

tokens.add(clean(buffer));
state = stateCOMMENT;
break;

case ',':
state = stateNEW_TOKEN;
tokens.add(clean(buffer));
buffer = new StringBuffer();
break;

default:
buffer.append(ch);
break;

}
break;

case stateNEW_TOKEN:
switch (ch) {

case '#':
tokens.add(clean(buffer));
state = stateCOMMENT;
break;

case ',':
tokens.add(clean(buffer));
buffer = new StringBuffer();
break;

case ' ': case '\t':
state = stateWHITESPACE;
break;

case '"':
buffer.append(ch);
state = stateQUOTED_DATA;
break;

default:
state = stateDATA;
buffer.append(ch);
break;

}
break;

case stateWHITESPACE:
switch (ch) {

case '#':
state = stateCOMMENT;
break;

case ',':
state = stateNEW_TOKEN;
// ACCEPT NEW EMPTY COLUMN HERE??
break;

case '"':
buffer.append(ch);
state = stateQUOTED_DATA;
break;

case ' ': case '\t':
break;

default:
state = stateDATA;
buffer.append(ch);
break;

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 38

}
break;

default:
break;

}
}
if (state == stateQUOTED_DATA)

throw new IOException("Unmatched quotes in line:\n" + line);
if (state != stateCOMMENT)

tokens.add(clean(buffer));
return tokens;

}
String clean(StringBuffer buffer) {

String string = buffer.toString().trim();
if (string.startsWith(DOUBLE_QUOTE))

return string.substring(1, string.length() - 1);
return string;

}
private BufferedReader _reader;
private String _line;
private static final String DOUBLE_QUOTE = "\"";
private static final String COMMENT_SYMBOL = "#";
private static final char stateINIT = 'S';
private static final char stateCOMMENT = '#';
private static final char stateQUOTED_DATA = 'q';
private static final char stateQUOTE_IN_QUOTED_DATA = 'Q';
private static final char stateDATA = 'D';
private static final char stateNEW_TOKEN = 'N';
private static final char stateWHITESPACE = 'W';

}

CSVReaderTest.java, 23-Feb-2001
import junit.framework.*;
import java.io.*;
import java.util.*;
public class CSVReaderTest extends TestCase
{

public CSVReaderTest(String name) {
super(name);

}
public void setUp() throws IOException {

filename = "CSVReaderTest.tmp.csv";
writer = new BufferedWriter(new FileWriter(filename));

}
public void tearDown() throws IOException {

new File(filename).delete();
}
public void testCreate() throws IOException {

CSVReader reader = getReaderAndCloseWriter();
assert(!reader.hasNext());

}
public void testSingleRecordSingleField() throws IOException {

writeln("test");
CSVReader reader = getReaderAndCloseWriter();

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 39

assert(reader.hasNext());
List columns = reader.next();
assertEquals(1, columns.size());
assertEquals("test", columns.get(0));

}
public void testSingleFieldMultipleColumns() throws IOException {

writeln("test2col1, test2col2");
CSVReader reader = getReaderAndCloseWriter();;
assert(reader.hasNext());
List columns = reader.next();
assertEquals(2, columns.size());
assertEquals("test2col1", columns.get(0));
assertEquals("test2col2", columns.get(1));

}
public void testEOF() throws IOException {

writeln("line1");
CSVReader reader = getReaderAndCloseWriter();
reader.next();
try {

reader.next();
fail("expected exception here");

}
catch (IOException e) {

pass();
}

}
public void testMultipleLines() throws IOException {

writeln("line1");
writeln("line2,line2");
writeln("line3");
CSVReader reader = getReaderAndCloseWriter();
assertEquals(1, reader.next().size());
assertEquals(2, reader.next().size());
assertEquals(1, reader.next().size());
assert(!reader.hasNext());

}
public void testComment() throws IOException {

writeln("line1 data");
writeln("# this is a comment");
String line3data = "line3,some,data,columns";
writeln(line3data);
CSVReader reader = getReaderAndCloseWriter();
reader.next();
List line3Columns = reader.next();
assertEquals("line3", line3Columns.get(0));
assert(!reader.hasNext());

}
public void testMoreComments() throws IOException {

writeln("# ok");
writeln("# well?");
CSVReader reader = getReaderAndCloseWriter();
assert(!reader.hasNext());

}
public void testDoubleQuotedData() throws IOException {

writeln("1015 Tenth Street,\"Laurel, MD 20707\", US");

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 40

CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(3, columns.size());
assertEquals("1015 Tenth Street", columns.get(0));
assertEquals("Laurel, MD 20707", columns.get(1));
assertEquals("US", columns.get(2));

}
public void testMoreThanOneCommaInDoubleQuotedData()

throws IOException {
writeln("1015 Tenth Street,\"Laurel, MD 20707, US\"");
CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(2, columns.size());
assertEquals("1015 Tenth Street", columns.get(0));
assertEquals("Laurel, MD 20707, US", columns.get(1));

}
public void testEmbeddedQuotesArePartOfString() throws IOException {

writeln("1015 Tenth Street, Jeff \"AC\" Langr, 1964");
CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(3, columns.size());
assertEquals("1015 Tenth Street", columns.get(0));
assertEquals("Jeff \"AC\" Langr", columns.get(1));
assertEquals("1964", columns.get(2));

}
public void testSingleEmbeddedDoubleQuoteIsPartOfString()

throws IOException {
writeln("normally you wouldn\"t do this");
CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(1, columns.size());
assertEquals("normally you wouldn\"t do this", columns.get(0));

}
public void testUnmatchedDoubleQuoteIsAnError() throws IOException {

writeln("\"jkl");
CSVReader reader = getReaderAndCloseWriter();
try {

reader.next();
fail("should have thrown IO exception");

}
catch (IOException e) {

pass();
}

}
public void testEmptyFields() throws IOException {

writeln("");
writeln(",");
writeln(",a,,,");
CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(1, columns.size());
assertEquals("", columns.get(0));
columns = reader.next();
assertEquals(2, columns.size());
columns = reader.next();

__
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

 41

assertEquals(5, columns.size());
}
public void testTrim() throws IOException {

writeln(
" this , is ,\tthe end\t, \t of , it, all ");

CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(6, columns.size());
assertEquals("this", columns.get(0));
assertEquals("is", columns.get(1));
assertEquals("the end", columns.get(2));
assertEquals("of", columns.get(3));
assertEquals("it", columns.get(4));
assertEquals("all", columns.get(5));

}
public void testNotTrim() throws IOException {

writeln(
"\" this should be flanked by white space \"");

CSVReader reader = getReaderAndCloseWriter();
List columns = reader.next();
assertEquals(1, columns.size());
assertEquals(

" this should be flanked by white space ", columns.get(0));
}
int writeln(String string) throws IOException {

writer.write(string, 0, string.length());
writer.write("\r\n", 0, 2);
return string.length() + 2;

}
CSVReader getReaderAndCloseWriter() throws IOException {

writer.close();
return new CSVReader(filename);

}
final void pass() {}
private String filename;
private BufferedWriter writer;

}

	Evolution of Test and Code Via Test-First Design
	
	
	March 2001

	Author
	Acknowledgments
	I
	Introduction
	Background
	Realizations
	Disclaimers
	Conclusions

	TfD Detailed Example – The CSVReader Class
	Origins
	JUnit Test Classes
	Getting Started
	Pass A – Test Against an Empty File
	Pass B –Read Single Record
	Pass C – Refactoring
	Pass D – Read Single Record, continued
	Pass E – Read Two Records
	Pass F – Two Columns
	Pass G – Multiple Columns
	Pass H – State Machine
	Table 1

	Code Smells
	Pass I – Two Columns
	Pass J – Plugging In The State Machine
	Pass K – Comma In Double Quotes
	Pass L – More Functionality
	Pass M – Still More Ideas
	Pass N – Whitespace
	Pass O – Double Quotes
	Pass P – Empty Columns
	Pass Q – Embedded Double Quotes
	Final Code
	CSVReader.java, built via TfD
	CSVReader.java, circa 1998
	CSVReaderTest.java, 23-Feb-2001

