Evolution of Test and Code Via Test-First Design
Jeff Langr
March 2001

Abstract

Test-first design is one of the mandatory practices of Extreme Programming (XP). It
requires that programmers do not write any production code until they have first written a
unit test. By definition, this technique results in code that is testable, in contrast to the large
volume of existing code that cannot be easily tested. This paper demonstrates by example
how test coverage and code quality isimproved through the use of test-first design.

Approach: An example of code written without the use of automated testsis
presented. Next, the suite of tests written for this legacy body of code is shown. Finally, the
author iterates through the exercise of completely rebuilding the code, test by test. The
contrast between both versions of the production code and the tests is used to demonstrate
the improvements generated by virtue of employing test-first design.

Specifics: The code body represents a CSV (comma-separated values) file reader, a
common utility useful for reading files in the standard CSV format. Theinitial code was
built in Java over two years ago. Unit tests for this code were written recently, using JUnit
(http://www.junit.org) as the testing framework. The CSV reader was subsequently built
from scratch, using JUnit as the driver for writing the tests first. The paper presents the
initial code and subsequent tests wholesale. The test-first code is presented in an iterative
approach, test by test.

Author

Jeff Langr is a consultant with Object Mentor, Inc., responsible for mentoring
development teamsin XP and training in OO and XP practices. Jeff has over eighteen years
software development experience, including close to ten years experience in object-oriented
development. Langr is the author of the book Essential Java Style (Prentice Hall, 1999).

Acknowledgments

Bob Koss and Bob Martin, of Object Mentor, provided useful feedback on the paper. Ann
Anderson provided pair programming time.

http://www.junit.org/

I ntroduction

In 1998, | was a great Java programmer. | wrote great Java code. Evidence of my great
code was the extent to which | thought it was readable and easily maintained by other
developers. (Never mind that the proof of this robustness was nonexistent, the distinction of
greatness being held purely in my head.) | took pride in the great code | wrote, yet | was humble
enough to realize that my code might actually break, so | typically wrote a small body of semi-
automatic tests subsequent to building the code.

Since 1998, | have been exposed to Extreme Programming (XP). XPisan “agile,” or
lightwei ght, development process designed by Kent Beck. Its chief focusisto alow continual
delivery of business value to customers, via software, in the face of uncertain and changing
requirements — the reality of most development environments. XP achieves this through a small,
minimum set of simple, proven development practices that complement each other to produce a
greater whole. The net result of XP is a development team able to produce software at a
sustainable and consistently measurabl e rate.

One of the practicesin XP istest-first design (TfD). Adopting TfD means that you write
unit-level tests for every piece of functionality that could possibly break. It also means that these
tests are written prior to the code. Writing tests before writing code has many effects on the code,
some of which will be demonstrated in this paper.

Thefirst (hopefully obvious) effect of TfD, isthat the code ends up being testable —
you’'ve aready written the test for it. In contrast, it is often extremely difficult, if not impossible,
to write effective unit tests for code that has already been written without consideration for
testing. Often, due to the interdependencies of what are typically poorly organized modules,
simple unit tests cannot be written without large amounts of context.

Secondly, the process of determining how to test the code can be the more difficult task —
once the test is designed, writing the code itself is frequently simple. Third, the granularity of
code chunks written by a developer via TfD is much smaller. This occurs because the easiest
way to write aunit test isto concentrate on a small discrete piece of functionality. By definition,
the number of unit tests thus increases — having smaller code chunks, each with its own unit test,
implies more overall code chunks and thus more overall unit tests. Finally, the process of
developing code becomes a continual set of small, relatively consistent efforts: write asmall test,
write asmall piece of code to support the test. Repeat.

TfD aso employs another important technique that helps drive the direction of tests: tests
should be written so that they fail first. Once atest has proven to fail, code is written to make the
test pass. The immediate effect of this technique is that testing coverage is increased; thistoo
will be demonstrated in the example section of this paper.

XP' s preferred enabling mechanism for TfD is XUnit, a series of open-source tools
available for virtually all OO (and not quite OO) languages and environments: Java, C++,
Smalltalk, Python, TCL, Delphi, Perl, Visual Basic, etc. The Javaimplementation, JUnit,
provides aframework on which to build test suites. It is available at http://www.junit.org} A test
suite is comprised of many test classes, each of which generally tests a single class of actual
production code. A test class contains many discrete test methods, which each establish atest
context and then assert actual results against expected results.

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

http://www.junit.org/

JUnit also provides asimple user interface that contains a progress bar showing the
success or failure of individual test methods as they are executed. Details on failed tests are
shown in other parts of the user interface. Figure 1 presents a sample JUnit execution.

L une laix]

Mirat
Ener the mame of ihe Test class:
CSWTmader Tewl - Aum

IS U
Huris: Errors Falures:
13 1] 1

Ervons aml Falues:

“ peiR a3 ngleR o C IR pade TesT aepedied <Hangle reoond= Dulwas <sngle o= =

£l I
Junilframewark AsseonF aledEmon expecied: =Xsingle record» Gul was «zngle record»

at puni frameworcdssert falbsser o 144)

al uni framesni assat TalMoEqualsiasser jaea 16500

al uni framess oot sasedBqualaisaged jva, Comgied Cods)

al punil framessoricAdsser] aassriEqualadisger] jBva, Comgied Coos)

al Cavikeader [estlestkead=ingleRecordiCEvHEader T esl i 345

at jarva lan g redect Method invobkes Malree Method)

at punf framesnrk Tesstase nTes¥TeshCase Java, Compilad Code)

al juni framessni Te=iCage minBanTesil age javs, Compiled Coded

1] [*]

[4] B |

[topped Exit

Figure 1 —JUnit user interface

The key part of JUnit isthat it isintended to produce Pavlovian responses: a green bar
signifiesthat all tests ran successfully. A red bar indicates at least one failure. Green = good, red
= bad. The XP developer quickly develops aroutine around deriving a green bar in a reasonably
short period of time — perhaps 2 to 10 minutes. The longer it takes to get a green bar, the more
likely it isthat the new code will introduce a defect. We can usually assume that the granularity
of the unit test wastoo large. Ultimately, the green bar conditioning is to get the devel oper to
learn to build tests for a smaller piece of functionality. Within this paper, references to “ getting a
green bar” are related to the stimulus-response mechanism that JUnit provides.

Background

During my period of greatnessin 1998, | wrote a simple Java utility class, CSV Reader,
whose function was to provide client applications a simple interface to read and manipulate
comma-separated values (CSV) files. | have recently found reason to unearth the utility for
potential use in an XP environment.

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ObjectMentor.com

However, XP doesn't take just anybody’ s great code. It insists that it come replete with
its corresponding body of unit tests. | had no such set of rigorous unit tests. In avain attempt to
satisfy the XP needs, | wrote a set of unit tests against this body of code. The set of tests seemed
relatively complete and reasonable. But the code itself, | realized, was less than satisfying.

This revelation came about from attempting to change the functionality of the parsing.
Embedded double quotes should only be allowed in afield if they are escaped, i.e.\ . The
existing functionality allowed embedded double quotes without escaping (“naked” quotes),
which leads to some relatively difficult parsing code.

| had chosen to implement the CSV Reader using a state machine. The bulk of the code, to
parse an individual line, resided in the 100+ line method col ummsFr onCSVRecor d (which | had
figured on someday refactoring, of course). The attempt to modify functionality was a small
disaster: | spent over an hour struggling with the state machine code before abandoning it.

| chose instead to rebuild the CSV Reader from scratch, fully using TfD, taking careful
note of the small, incremental stepsinvolved. The last section of this paper presents these steps
in gory detail, explaining the rationale behind the development of the tests and corresponding
code. The next section neatly summarizes the important realizations from the detail section.

Realizations
Building Java code via TfD takes the following sequence:
» Design atest that should fail.

* Immediate failure may be indicated by compilation errors. Usually thisisin the form
of aclass or method that does not yet exists.

* If you had compilation errors, build the code to pass compilation.
* Runal testsin JUnit, expecting ared bar (test failure).
* Build the code needed to pass the test.

* Runall testsin JUnit, expecting a green bar (test success). Correct code as needed
until agreen bar is actually received.

Building the code needed to pass the test is a matter of building only what is necessary. In
many cases, this may involve hard-coding return values from methods. Thisis atemporary
solution. The hard-coding is eliminated by adding another test for additional functionality. This
test should break, and thus require a solution that cannot be based on hard-coding.

Design will change. In the CSVReader example, my first approach was to use substring
methods to break the line up. This evolved to a StringTokenizer-based solution, then to its
current implementation using a state machine. The time required to go from design solution to
the next was minimal; | was able to maintain green bars every few minutes. The evolution of
tests quickly shaped the ultimate design of the class. The substring solution sufficed for asingle
test against a record with two columns. But it lasted only minutes, until | designed a new test that
introduced records with multiple columns.

Theinitial attempt to introduce the complexity of the state machine was a personal failure
due to my deviation from the rules of TfD. | unsuccessfully wrote code for 20 minutes trying to
satisfy asingle test. My course correction involved stepping back and thinking about the quickest

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

means of adding atest that would give me a green bar. Thisinvolved thinking about a state
machine at its most granular level. Given one state and an event, what should the new state be?
My test code became repetitions of proving out the state machine at this granularity.

The original code written in 1998 had 6 methods, the longest being well over 100 lines of
code. | wrote 15 tests after the fact for this code. | found it difficult to modify functionality in
this code. The final code had 23 methods, the longest being 18 source lines of code. | wrote 20
tests as part of building CSVReader via TfD.

Disclaimers

The CSVReader tests are a bit awkward, requiring that a reader be created with a
filename, even though the tests are in-memory (specifically the non-public tests). This suggests
that CSV Reader is not designed well: fixing thiswould likely mean that CSV Reader be modified
to take a stream in its constructor (ignoring it if necessary) instead of just afile.

| ended up testing non-interface methods in an effort to reduce the amount of time
between green bars. Is testing non-interface methods a code smell? It perhaps suggests that |
break out the state machine code into a separate class. My initial thought is that I’m not going to
need the separate class at this point. When and if | get to the point where | write some additional
code requiring asimilar state machine, | will consider introducing arelevant pattern.

Some of the test methods are a bit large — 15 to 20 lines, with more than a couple
assertions. My take on test-first design is that each test represents a usabl e piece of functionality
added. | don’'t have a problem with the larger test methods, then. Commonality should be
refactored, however. CSVReaderTest contains afew utility methods that make the individual
tests more concise.

Conclusions

Test-first design has a marked effect on both the resulting code and tests written against
that code. TfD promotes an approach of very small increments between receiving positive
feedback. Using this approach, my experiment demonstrates that the amount of code required to
satisfy each additional assertion is small. The time between incrementsis very brief; on average,
| spent 3-4 minutes between receiving green bars with each new assertion introduced.
Functionality is continually increasing at arelatively consistent rate.

TfD and incremental refactoring as applied to this example resulted in 33% more tests. It
also resulted in alarger number of smaller, more granular methods. Counting simple source lines
of code, the average method size in the original sourceis 25 lines. The average method sizein
the TfD-produced source is 5 lines. Small method sizes can increase maintainability,
communicability, and extensibility of code. Going by average method size in this specific
example, then, TfD resulted in considerable improvement of code quality over the original code.
Method sized decreased by afactor of 5.

Maintainability of the code was proven by my last pass (Pass Q, below) at building the
CSVReader via TfD. The attempt to modify the original body of code to support quote escaping
was afailure, representing more than 20 minutes of effort after which time the functionality had
not been successfully added. The code built via TfD allowed for this same functionality to be
successfully added to the code in 10 minutes, half the time. (Granted, my familiarity with the

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

evolving code base may have added some to the expediency, but | was aso very familiar with
the original code by virtue of having written several testsfor it after the fact.)

TfD aonewill not result in improved code quality. Refactoring of code on afrequent
basisisrequired to keep code easily maintainable. Having a body of tests that proves existing
functionality means that code refactoring can be performed with impunity.

The final conclusion | drew from this exampleisthat TfD, coupled with good refactoring,
can evolve design rapidly. For the CSVReader, | quickly moved from arudimentary string
indexing solution to a state machine, without the need to take what | would consider backward
steps. The amount of code replaced at each juncture was minimal, and perhaps even a necessary
part of design discovery, alowing development of the application to move consistently forward.

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

TfD Detailed Example — The CSVReader Class

Origins

| have included listings of the code (CSV Reader.java, circa 1998) asinitially written,
without the benefit of test-first design (Tfd). | have also included the body of tests
(CSVReaderTest.java, 23-Feb-2001) written after the fact for the CSVReader code. These
listings appear at the end of this paper, due to their length. They are included for comparison
purposes. The remainder of the paper presents the evolution of CSVReader viatest-first design.

JUnit Test Classes

Building tests for use with JUnit involves creation of separate test classes, typically one
for each class to be tested. By convention, the name of each test class is derived by appending
theword “Test” to the target class name (i.e. the class to be tested). Thus the test class name for
my CSVReader classis CSVReaderTest.

JUnit test classes extend from junit.framework. TestCase. The test class must provide a
constructor that takes as its parameter a string representing an arbitrary name for the test case;
thisis passed to the superclass. Thetest class must contain at least one test method before JUnit
recognizes it as atest class. Test methods must be declared as

public void testMethodName()
where Met hodNane represents the unique name for the test. Test method names should be
descriptive and should summarize the functionality proven by the code contained within. The
following code shows a skeletal class definition for CSVReaderTest.

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

i mport junit.framework. *;
public class CSVReader Test extends Test Case {
publ i c CSVReader Test(String name) ({
super (name) ;

public void testAbilityToDoSonet hing() {
/1l ... code to set up test...
assert(conditional);
}
}

Subsequent listings of tests will assume this outline, and will show only the relevant test
method itself. Additional code, including refactorings and instance variables, will be displayed as
needed.

Getting Started

Theinitial test written against a class is usually something dealing with object
instantiation, or creation of the object. For my CSVReader class, | know that | want to be able to
construct it via afilename representing the CSV file to be used as input. The simplest test | can
write at this point isto instantiate a CSV Reader with a filename string representing a non-
existent file, and expect it to throw an exception. t est Cr eat eNoFi | e() includesalittle bit of
context setup: if thereis afile with the bogus filename, | delete it so my test works.

public void testCreateNoFile() throws | OException {
String bogusFil ename = "bogus. fil ename";
File file = new Fil e(bogusFi |l enane) ;
if (file.exists())
file.delete();
try {
new CSVReader (bogusFi | enane) ;
fail ("expected | O exception on nonexi stent CSV file");

}

catch (1 OCException e) {
pass();

}

}
voi d pass() {}

| expect test failureif | do not get an |OException. Note my addition of the no-op method
pass() . | add this method to allow the code to better communicate that a caught |OException
indicates test success.

It isimportant to note that there is no CSV Reader.java sourcefile yet. | write the
t est Cr eat eNoFi | e() method, then compileit. The compilation fails as expected — there is no
CSVReader class. | iteratively rectify the situation: | create an empty CSV Reader class
definition, then recompile CSVReaderTest. The recompile fails. wrong number of argumentsin

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

constructor, |OException not thrown in the body of the try statement. Working through
compilation errors, | end up with the following code™

i mport java.io.| OException;
public class CSVReader ({
public CSVReader (String filenane) throws | OException {

}

}

This code compilesfine. | fire up JUnit and tell it to execute all the testsin
CSVReaderTest. JUnit finds one test, t est Cr eat eNoFi | e() . (JUnit uses Javareflection
capabilities and assumes all methods named with the starting string “test” are to be executed as
tests.) As | expect, | see ared bar and the message “expected IO exception on nonexistent CSV
file” My task isto now write the code to fix the failure. It ends up looking like this:

i mport java.io.*;
public class CSVReader ({
public CSVReader (String filename) throws | OException {
t hr ow new | OExcepti on();

}

}

| execute JUnit again, and get a green bar. | have built just enough code, no more, to get
al of my tests (just one for now) to pass.

Pass A — Test Against an Empty File
| need CSV Reader to be able to recognize valid input files. | want atest that proves

CSVReader does not throw an exception if the file exists. | codet est Cr eat eW t hEnpt yFi | e()
to build an empty temporary file.

public void testCreateWthEnptyFile() throws | OException {
String filenanme = "CSVReader Test.tnp.csv";
Buf feredWiter witer =
new BufferedWiter(new FileWiter(filenane));
writer.close();
CSVReader reader = new CSVReader (fil enane);
new Fil e(filenane).delete();

}

Thistest fails, since the constructor of CSV Reader for now is always throwing an
|OException. | modify the constructor code:

public CSVReader(String filename) throws | CException {
if ('new File(filenane).exists())
t hrow new | OException();

}

This passes. | want to extend the semantic definition of an empty file, however. |
introduce the hasNext () method as part of the public interface of CSVReader. A CSV Reader
opened on an empty file should return true if this method is called. | add an assertion:

assert (! reader. hasNext());

! By now you' ve hopefully noticed that test code appears on the left-hand side of the page, and actual code
appears on the right-hand side of the page. Thisis a nice convention that is used by William Wake at his web site,
XP123.com.

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

after the construction of the CSVReader object, so that the complete test looks like this:

public void testCreateWthEnptyFile() throws | COException {
String filenane = "CSVReader Test.tnp.csv";
Buf feredWiter witer =
new BufferedWiter(new FileWiter(filenane));
witer.close();
CSVReader reader = new CSVReader (fil enane);
assert (! reader. hasNext());
new Fil e(fil enane).delete();

}

The compilation fails (*no such method hasNext () 7). | build an empty method with the
signature publ i ¢ bool ean hasNext (). The question is, what do | return from it? The answer is,
avalue that will make my test break. Since the test asserts that calling hasNext () against the
reader will return false, the simplest means of getting the test to fail isto have hasNext () return
true. | code it; my compileisfinally successful.

As| expect, JUnit gives me ared bar upon running the tests. For now, al that isinvolved

in fixing the code is changing the return value of hasNext () from trueto false — green bar! The
resultant code is shown below.

i mport java.io.*;
public class CSVReader ({
public CSVReader(String filenanme) throws | CException {
if (!'new File(filenane).exists())
t hr ow new | OExcepti on();

}

publ i c bool ean hasNext () {
return fal se;

}

}

Note that the test and corresponding code took under five minutes to write. | wrote just
enough code to get my unit test to work — nothing more. Thisisin line with the XP principle that
at any given time, there should be no more functionality than what the tests specify. Or asit’s
better known, “Do The Simplest Thing That Could Possibly Work.” Or asit’s more concisely
known, “DTSTTCPW.” Adherence to this principle during TfD, coupled with constantly keeping
code clean viarefactoring, is what allows me to realize green bars every few minutes. Y ou will
see some examples of refactoring in later tests.

Pass B —Read Single Record

The impetus to write more code comes by virtue of writing atest that fails, usualy by
asserting against new, yet-to-be-coded functionality. This can often be a thought-provoking,
difficult task.

One such way of breaking the tests against CSVReader isto create afile with asingle
record in it, then use the hasNext () method to determine if there are available records. This
should fail, since we hard-coded hasNext () to return false for the last test (Pass A). The new test
method is named t est ReadSi ngl eRecor d() .

public void testReadSi ngl eRecord() throws | OException {
String filename = "CSVReader Test.tnp. csv";
Buf feredWiter witer =

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
10

new Buf feredWiter(new FileWiter(filenane));
witer.wite("single record", 0, 13);
witer.wite("\r\n", 0, 2);
writer.close();
CSVReader reader = new CSVReader (fil enane);
assert (reader. hasNext ());
reader. next ();
assert (! reader. hasNext());
new Fil e(fil enane).delete();

}

If I try to fix the code by returning true from hasNext () , thent est Creat e() fails. At
this point I will have to code some logic to maket est ReadSi ngl eRecor d() work, based on
working with the actual file created in the test.

The solution has the constructor of CSV Reader creating a BufferedReader object against
the file represented by the filename parameter. The first line of the reader isimmediately read in
and stored in an instance variable, _current Li ne. The hasNext () method is altered to return
trueif _current Li ne isnot null, false otherwise.

Proving the correct operation of the hasNext () method does not mean
t est ReadSi ngl eRecor d() iscomplete. The semantics implied by the name of the test method
are that we should be able to read a single record out of my test file. To complete the test, |
should be able to call amethod against CSV Reader that reads the next record, and then use
hasNext () to ensure that there are no more records available.

The method name | chose for reading the next record isnext () — so far, CSVReader
corresponds to the java.util.lterator interface. Compilation of the test breaks since there is not yet
amethod named next () in CSVReader. The method is added with an empty body. This results
in JUnit throwing up ared bar for the test. The final line of code is added to the next () method:

_currentLine = _reader.readLine();

Thisresultsin the line being read from the file and stored in the instance variable
_current Li ne. Recompiling and re-running the JUnit tests results in agreen bar.

i mport java.io.*;
public class CSVReader ({
public CSVReader(String filename) throws | CException {
if (!'new File(filenane).exists())
t hrow new | OExcepti on();
_reader = new Buff er edReader (
new java.io. Fil eReader (fil enane));
_currentLine = _reader.readLine();

publ i c bool ean hasNext () {
return _currentLine !'= null;

public void next() throws | CException {
_currentLine = _reader.readLine();

private BufferedReader _reader;
private String _currentlLine;

}
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

11

Pass C — Refactoring

One of therulesin XPisthat there should be no duplicate lines of code. As soon as you
recognize the duplication, you should take the time to refactor it. The longer between refactoring
intervals, the more difficult it will be to refactor it. Once again, XP is about moving forward
consistently through small efforts. Some specific techniques for refactoring code are detailed in
Martin Fowler’ s book, Refactoring: I mproving the Design of Existing Code (Addison Wesley
Longman, Inc., 1999, Reading, Massachusetts). The chief goal of refactoring isto ensure that the
current code always has the optimal, simplest design.

Note that there is currently some duplicate code in both CSVReaderTest and CSV Reader.
Time for some refactoring. In CSVReader, the line of code:

_currentLine = _reader.readLine();
appearstwice, so it is extracted into the new method r eadNext Li ne:

i mport java.io.*;
public class CSVReader ({
public CSVReader (String filename) throws | OException {
if (I'new File(filenane).exists())
t hrow new | OException();
_reader = new BufferedReader (
new java.io. Fil eReader (fil enane));
r eadNext Li ne() ;

publ i c bool ean hasNext () {
return _currentLine !'= null

}

public void next() throws | CException {
r eadNext Li ne() ;

}

voi d readNextLine() throws | CException {
_currentLine = _reader.readLine();

private BufferedReader _reader;
private String _currentlLine;

}

Within CSVReaderTest, the two lines required to create the BufferedWriter object are
refactored to the set Up() method. set Up() isamethod that is executed by the JUnit framework
prior to each test method. Thereis aso a corresponding t ear Down() method that is executed
subsequent to the execution of each test method. | modify thet ear Down() method to include a
line of code to delete the temporary CSV file created by the test.

| extract the two lines to close the writer and create a new method
get Reader AndCl oseW i ter (). The new test methods, new instance variables, and modified
methods are shown in the following listing.

public void setUp() throws | OException {
filename = "CSVReader Test.tnp.csv";
writer = new BufferedWiter(new FileWiter(filenane));

}
public void tearDown() {
new Fil e(fil enane).delete();

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
12

}
public void testCreateWthEnptyFile() throws | OException {
CSVReader reader = get Reader AndCl oseWiter();
assert (! reader. hasNext());
}
public void testReadSi ngl eRecord() throws | OException {
witer.wite("single record", 0, 13);
witer.wite("\r\n", 0, 2);
CSVReader reader = get Reader AndCl oseWiter();
assert (reader. hasNext ());
reader. next ();
assert (! reader. hasNext());

}
CSVReader get Reader AndCl oseWiter() throws | OException {
witer.close();
return new CSVReader (fil enane);
}
private String fil enane;
private BufferedWiter witer;

Pass D — Read Single Record, continued

The test method t est ReadSi ngl eRecor d isincomplete. I'm building a CSV reader. |
want to ensure that it is able to return the list of columns contained in each record. For asingle
record with no commas anywhere, | should be able to get back alist that contains one column.
The columns should be returned upon the call to next (), So my code should look like:

Li st colums = reader.next();

The corresponding assertion is:

assert Equal s(1, colums.size());

| insert thesetwo linesint est ReadSi ngl eRecor d:

public void testReadSi ngl eRecord() throws | CException {
writer.wite("single record", 0, 13);
witer.wite("\r\n", 0, 2);
CSVReader reader = get Reader AndCl oseWiter();
assert (reader. hasNext());
Li st colums = reader. next();
assert Equal s(1, colums.size());
assert Equal s("single record", columms.get(0));
assert (! reader. hasNext());

}

and compile. The failed compile forces me to modify next () to return ajava.util.List object. For
now, to get the compileto pass, | have next () simply return anew ArrayList object. Running
JUnit resultsin ared bar since the size of an empty ArrayList isnot 1. | modify next () to add an
empty string to the ArrayList beforeit is returned. JUnit now gives me a green bar.

Now | need to ensure that the single column returned from next () containsthe data |
expect (“singlerecord”):

assert Equal s("single record", columms.get(0));
Thisfails, as expected, so instead of adding an empty string to the return ArrayList, | add the
string “single record.” | get a green bar. Here' s the modified next () method:

| public List next() throws |OException {

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
13

r eadNext Li ne() ;

Li st colums = new Arraylist();
col umms. add("singl e record");
return col umms;

}

On the surface, these steps seem unnecessary and even ridiculous. Why am | creating
hard-coded solutions? X P promotes the concept that we should build just enough software at any
given timeto get the job done: DTSTTCPW. The code | have written is just enough to satisfy the
tests | have designed. Functionality is added by creating tests to demonstrate that the code does
not yet meet that additional desired functionality. Code is then written to provide the missing
functionality. The baby steps taken allow for a more consistent rate in delivering additional
functionality.

Pass E — Read Two Records

To break t est ReadSi ngl eRecor d() | can write two records, each with different data, to
the CSV file. While writing t est ReadTwoRecor ds, | had to recode the nasty pairs of lines
required to write each string to the BufferedWriter. | decided to factor that complexity out into
the method wr i t el n. | subsequently went back and modified the code in
t est ReadSi ngl eRecor d() to also usethe utility method wri t el n.

public void test ReadTwoRecords() throws | OException {
witeln("record 1");
witeln("record 2");
CSVReader reader = get Reader AndCl oseWiter();
reader. next ();
Li st columms = reader.next();
assert Equal s("record 2", colums.get(0));
}
1.,
void witeln(String string) throws | OException {
witer.wite(string, 0, string.length());
witer.wite("\r\n", 0, 2);

}

In order to fix this broken test scenario, | could go on and keep storing datain the
ArrayList, but that would be repeating myself. It’s time to write some real code.

To get things to work, the List of columnsin the next () method is populated with
_current Li ne. Note that the contents of _cur r ent Li ne must be used before they are replaced
with the next line; i.e., the columns are popul ated before the call to r eadNext Li ne() .

public List next() throws | OException {
Li st colums = new ArraylList();
col ums. add(_currentLine);
r eadNext Li ne() ;
return col ums;

}

Pass F — Two Columns

I’m now at the point where | want to start getting into the CSV part of things. | build
t est TwoCol unms() , which tests against a single record with an embedded comma. | expect to

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
14

get two columns in return, each with the appropriate string data. The test breaks since | am

currently assuming that the entire line is a single column.

public void test TwoCol ums() throws | OException {
writeln("colum 1, colum 2");
CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader. next();
assert Equal s(2, colums. size());
assert Equal s("colum 1", col ums. get (0));
assert Equal s("col um 2", colums.get(1));

}

To get my green bar, the "simplest thing that could possibly work” is to use the java.lang.String
method subst ri ng to determine the location of any existing comma. | can write that code:

public List next() throws | CException {
Li st colums = new Arraylist();

r eadNext Li ne() ;
return col ums

}

conmmal ndex)) ;

i nt comual ndex = _currentlLine.indexOh(",");
i f (commal ndex == -1)
col umms. add(_currentLine);
el se
{
col umms. add(_current Li ne. substring(0,
col umms. add(_current Li ne. substri ng(comual ndex + 1));
}

Pass G — Multiple Columns

Breaking aline into two columns is simple enough. A test to seeif aline can be split into

three or more columns fails.

public void testMiltipleColums() throws | OException {
writeln("colum 1,colum 2,colum 3");
CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader.next();
assert Equal s(3, colums.size());
assert Equal s("col unmm 1", colums. get(0));
assert Equal s("col unmm 2", colums. get(1));
assert Equal s("col unmm 3", colums. get(2));

}

Trying to extend the current subst ri ng solution ends up being too complex. Using a
StringTokenizer to split columns on a comma boundary is an easy, elegant solution.

public List next() throws | OException {

Li st colums = new ArraylList();
StringTokeni zer tokeni zer =

new StringTokeni zer (_currentLine,
whi |l e (tokeni zer. hasMoreTokens())

col ums. add(t okeni zer. next Token());
readNext Li ne();
return col ums;

Evolution of Test and Code Via Test-First Design

Jeff Langr

Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

15

| had only spent a few minutes on the substring-based solution, and it worked for the time
being, so | don’t consider its departure as the mark of apoor initial design decision.

Pass H — State Machine

| writet est Commal nDoubl eQuot es() to alow CSVReader to treat commas as data, not
delimiters, if they appeared in a column flanked by double quotes.

public void testConmal nDoubl eQuotes() throws | OException {
witeln("\"colum with a , (comm)\", colum 2");
CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader.next();
assert Equal s(2, colums. size());
assertEqual s("colum with a , (conmm)", columms.get(0));
assert Equal s("colum 2", colums. get(1));

}

After thinking for aminute, | realize that the StringTokenizer solution is going to be too
difficult to go further with, if even feasible at al. Instead | come up with the idea of asimple
state machine, just like in my 1998 solution.

| work on the state machine code after sketching a quick state diagram. It takes about 20
minutes, far longer than | expect, and far too long without any feedback. | make a couple
trandliteration errors between the table and the code, thus requiring some debugging steps. |
decide that my approach —to not build the state code incrementally —isin error. The code | am
building to meet the requirements of the state diagram is looking like the old code | wrote. | have
one large, ugly method.

At this point | choose to start over again, deleting the state code and trying to see how
quickly I can get to agreen bar. What this means, though, isthat | have to back up and comment
out t est Commal nDpubl eQuot es() , adding instead incremental tests that interact with non-
interface methods™

The simplest state machine to build at this point is one that accepts asingle word. This
state machine is detailed in Table 1.

Table 1

Actions New State
<init> delim
delim any char append char inWord
inwWord any char append char
inWord end of string (eos) writeWord <fini>

2 The term non-interface methods is a semantic definition, and indicates methods that are not part of the
primary client interface. By converse definition, interface methods are methods that | expect interested clients to
interact with — the published behavior per a UML diagram. In Java, if tests reside in the same package as the tested
code, the access specifier for these methods is package (default). If the tests reside in a different package than the
tested code, the non-interface methods must be designated using the Java keyword publ i c.

Technically, non-interface methods become part of the interface, since the test code becomes an interested

client.
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

16

The easiest way to get going, then, isto track the state of a single word, character by
character. | buildt est St at eOneWor d() to asserts against theinitial state of a CSV Reader:

public void testStateOneWord() throws | OException {
CSVReader reader = get Reader AndCl oseWiter();
assert Equal s(CSVReader . stateDel im reader.getState());

}

To support thisin code, | create a new method with package access, get St at e() , and

hardcode its return value, st at eDel i m

int getState() {
return stateDelim

final static int stateDelim= O;

| add a second assertion to build the concept of a current word, which should be empty at

this point since | have generated no events:

| assert Equal s("", reader.getCurrentWrd());

Passing this test involves adding a new method that for now simply returns the empty

string.

So how do | track state for given input? Throwing character events at the reader should
work. | design the interface into CSV Reader to be amethod, char Event , that takesasingle

character asits parameter.

My first assertion, assuming atest word “test”, isto throw the single character ‘t’ at the
CSV Reader object and make sure that my current stateis “inWord,” per my state table.

reader.charEvent ('t');
assert Equal s(CSVReader . statel nWrd, reader.getState());

This requires me to add the constant to CSV Reader representing the new state. Making
the code work means storing the current state as an instance variable (_st at e), initializing it to
st at eDel i m and changing the state to st at el nWor d upon the receiving achar Event message.

int getState() {
return _state;
}

voi d char Event (char ch) {
_state = statel nWWrd;
}

private int _state = stateDelim
final static int statelnWrd = 1;

Next, | loop through the charactersin the rest of the test word, sending the appropriate
char Event for each. | send the end of string event, which represents a new method. | then assert
that my current word is the same as my test word. The complete test method now looks like:

public void testStateOneWord() throws | OException {
CSVReader reader = get Reader AndCl oseWiter();
assert Equal s(CSVReader . stateDel im reader.getState());
assert Equal s("", reader.getCurrentWrd());
reader.charEvent ('t');
assert Equal s(CSVReader . statel nWwrd, reader.getState());
String testWrd = "test";
for (int i =1; i < testWrd.length(); i++)

reader. char Event (test Word. charAt(i));

reader. endOf StringEvent () ;

Evolution of Test and Code Via Test-First Design

Jeff Langr

Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

17

assertEqual s("test", reader.getCurrentWord());

}

Fixing thisfailing test is easy: | add an instance variable _cur r ent Wor d, initiadizeit to
the empty string ("), and have endO St ri ngEvent Set _current Wr d to the string “test”
explicitly. The assertion isthat get Cur r ent Wor d() returns the expected word “test” when all is
done. Hardcoding makes it so. The new/modified CSV Reader code:

String getCurrentWord() {
return _current Wrd;

void endOF StringEvent () {
_currentWord = "test";
}

private String _currentWrd = ""

Note that | have not even touched the next () method — | am testing CSV Reader’ s ability
to maintain my state irrespective of the functionality in next ().

Code Smells

To me and others (including reviewers of this paper), testing against non-interface
methods is a code smell — a hint that there is something bad about the code. Adding tests against
package methods such as char Event and get Cur r ent Wor d() issuch ahint. | am no longer
testing against the interface of CSVReader, | am testing against its specific current
implementation. This means that the tests will need to be rewritten as the implementation
changes.

Ultimately, the smell indicates that the complex state code should be broken into a
separate class, perhaps a generic state machine implementation. The new class would have its
own set of tests against its public interface. However, my initial reaction is that I’m not going to
need the new class for the time being. The effort to split the tests and code out will be roughly
the same now or later, so per XP, | will defer the design decision until | really need it.

Pass| — Two Columns

Tracking two columns ended up being the most involved test in the completed
application. Building this iteratively took perhaps 20 minutes, but | added my assertionsin
incrementally, ensuring that | was getting a green bar every few minutes.

The updated state table appears as Table 2.

Table 2
State Event Actions New State
<init> delim
delim any char append char inWord
inWord : writeWord, delim
newWord
inWord any other char append char
inWord end of string (eos) writeWord <fini>
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

18

Building t est St at eTwoCol unms () assertion by assertion is similar to the techniquein
PassH. | create atest input string that should break into two columns. | loop through the string
until | receive acomma. | assert that the current column contains the first word in the input
string. After sending the commachar Event , | assert that the new stateisstateDel i m | add a
new non-interface method, get Cur r ent Li neCol umms() , to ensure that each word is added to a
list of columns (that will ultimately be returned by the next () method). I loop through the rest of
the input string, adding assertions as appropriate.

Rather than detail the code evolution here, | have added comments to the test code below.
| generaly would not leave these comments in the released test. Note that | did a minor
refactoring: | decided | didn’t care for the term term “word” when | really meant “column.” |
modified t est St at eOneWor d() andt est St at eTwoCol unms() accordingly to refer to a
current Col unm instead of acur rent Wr d.

public void testStateTwoCol ums() throws | OException {
String testlnput = "wordl, word2";
CSVReader reader = get Reader AndCl oseWiter();
i nt commual ndex = testlnput.indexOF(",");
for (int i = 0; i < conmul ndex; i++)
reader. char Event (test | nput.charAt(i));

/1 fixing this means adding a StringBuffer (_currentBuffer)
/1 to track the characters as they are appended.

/1 getCurrentWord, instead of returning _currentWrd,

/1 returns _currentBuffer.toString().

assert (reader. get Current Col um() . equal s("word1"));

reader. charEvent (',");

/1 adding the next assertion neans adding in an if
/1 statenent in charEvent to manage the distinction
/1 between stateDelimand statel n\Wbrd
assert(reader.getState() == CSVReader.stateDelim;

/1 we also want to nmake sure the "wite word" action
/1 takes place. getColums for now just hardcodes a
/1l list with the single entry "wordl".

Li st colums = reader. get CurrentLi neCol ums();

assert Equal s(1, colums.size());

reader. char Event (test | nput. char At (conmal ndex + 1));
assert Equal s(CSVReader . st at el nWord, reader.getState());
/1 this works. so we need a test that fails, instead

/1 the next assertion requires that _currentBuffer be
/1 cleared out, so we add a new nmet hod newwrd() to
/1 blow away the buffer, when commma event is received
/1 in inWrd state.

assert Equal s("w', reader. getCurrent Col um());

/1 the next assertion works.

for (int i = commalndex + 2; i < testlnput.length(); i++)
reader. charEvent (testlnput.charAt(i));

reader. endOf StringEvent () ;

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
19

assert Equal s("word2", reader.get Current Colum());

/! do we have our colums?

col ums = reader. get Current Li neCol ums();

/1 to get the following to work, we have to make col ums

/1 into an instance variable. In order to nap to the state

/1 diagram we also make a new nethod witeWwrd. witeWrd
/1 gets the current word and adds it to the colums. The

/1 writeWwrd nethod nust be called from

/1 charEvent->statel nWrd->'," and al so fromendOf StringEvent.
/1 At this point, also, the instance variable _currentWord can
/1 be renoved, along with any references to it.

/1 The contents of the colums are also tested, though both
/] tests pass i mediately.

assert Equal s(2, columms.size());

assert Equal s("wordl1l", columms. get(0));

assert Equal s("word2", colums.get(1));

}

The modified/new CSV Reader code resulting from the incremental creation of

t est St at eTwoCol urms() is shown below.

String getCurrent Col uim() {
return _columBuffer.toString();
}

Li st get CurrentLi neCol ums() {
return _col ums;
}

voi d char Event (char ch) {
if (_state == statelnWord) {

if (ch==",") {
witeWrd();
newWor d() ;
_state = stateDelim

}

el se
append(ch);

el se

if (_state == stateDelim {
_state = statel nWrd;
append(ch);

}
void witeWwrd() {

_col ums. add(get Current Col um());
}

void newword() {
_columBuffer.delete(0, _columBuffer.length());
}

voi d append(char ch) {
_col umBuf f er. append(ch);

}
voi d endOf StringEvent () {

_currentColum = "test";

witeWwrd();
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

20

}

private String _currentColum = "";
private StringBuffer _columBuffer = new StringBuffer();
private List _colums = new ArraylList();

Pass J — Plugging In The State Machine

Now that | have confidence enough in the state machine to be able to pass the above test
situations, | need to hook the state stuff up to the existing framework. But how do | write atest
that fails first? The test method t est St at eW t hRead() writes asingle record and calls the
next () method against the CSV Reader.

public void testStateWthRead() throws | OException {
witeln("record 1,x");
CSVReader reader = get Reader AndCl oseWiter();
reader. next ();
Li st columms = reader. get CurrentLi neCol ums();
assert Equal s(2, colums. size());

}

The assertion that failsinitially is to test the non-interface get Cur r ent Li neCol unms()
and ensure that it returns ajava.util.List containing two columns. Thiswill force us to hook the
state machine code into the next () method.

Hooking in the state machine code involves writing afor loop in next () to send each
character of _curr ent Li ne as character events, followed by theendO St ri ngEvent . At this
point, we should recognize the duplicate code involved in parsing through the string, and
subsequently delete the string tokenizing technique in arefactoring of sorts. Doing so, however,
breakst est ReadTwoRecor ds, SO we must fix CSVReader by adding code to clear the columns
array and create a new word.

public List next() throws | COException {
_colums. cl ear();
newwbr d() ;
for (int i =0; i < _currentLine.length(); i++)
charEvent (_currentLine.charAt(i));
endOF StringEvent () ;
r eadNext Li ne() ;
return get CurrentLi neCol ums();

}

Pass K — Comma In Double Quotes

| retry my t est Conmal nDoubl eQuot es() (Pass H), but still fails. Instead of trying to fix
it wholesale, | approach the solution incrementally. | first update the state machine table to
represent the double-quote functionality | am trying to add (Table 3).

Table 3
Actions
<init> delim
delim “ inQuoteWord
delim any other char append char inWord
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

21

State Event Actions New State

inWord : writeWord, delim
newWord

inWord any other char append char

inWord end of string (eos) writeWord <fini>

inQuoteWord “ writeWord, quotelnQuoteWord
newWord

inQuoteWord any other char append char

(including ,)
guotelnQuoteWord delim
guotelnQuoteWord eos <fini>

| comment t est Commal nDoubl eQuot es() once more, and create a new test against state,
t est Doubl eQuot es() . Again, thistest is built iteratively, assert by assert.

public void testDoubl eQuotes() throws | OException {
/1l example: "A a",b
CSVReader reader = get Reader AndCl oseWiter();
reader. charEvent (' ""');
assert Equal s(CSVReader . st at el nQuot eWbrd, reader.getState());
reader. charEvent (' A');
reader. charEvent (',");
assert Equal s(CSVReader . st at el nQuot eWbrd, reader.getState());
reader. charEvent ('a');
reader. charEvent (' ""');
assert Equal s(

CSVReader . st at eQuot el nQuot eWord, reader.getState());
assert Equal s("A, a", reader.getCurrentLineColums().get(0));
reader. charEvent (',");
assert Equal s(CSVReader . stateDel im reader.getState());
reader. charEvent (' b');
reader. endOr StringEvent ();
assert Equal s("b", reader. getCurrentLineColumms().get(1));

}

While building t est Doubl eQuot es() , | note that the codein char Event isbeginning to
get confusing. | choose to refactor now, beforeit’ stoo late to do so easily. | reorganize things
based on character events. Each special character is treated now as a separate method.

voi d charEvent (char ch) {
switch (ch) {

case ',': commmEvent(); break;
case '"': doubl eQuot eEvent (); break;
def aul t

def aul t Char Event (ch); break;
}
}
voi d commaEvent () {
switch (_state) {
case (statelnWrd):
writeWword();
newWor d() ;

_state = stateDelim
br eak;

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
22

case (stateDelin:
_state = statel nWrd;

append(',"');
br eak;
case (statel nQuoteWrd):
append(',");
br eak;

case (stateQuotel nQuoteWord):
_state = stateDelim
br eak;

}

}
voi d doubl eQuot eEvent () {
switch (_state) {
case stateDelim
_state = statel nQuot eWrd;

br eak;

case statel nWrd:
append('"");
br eak;

case stat el nQuot eVord:
_state = stateQuotel nQuot eWr d;
witeWrd();
newMor d() ;
br eak;

}

voi d def aul t Char Event (char ch) {
switch (_state) {
case stateDelim
_state = statel nWrd;
append(ch);
br eak;
case statel nWrd:
append(ch);
br eak;
case stat el nQuot eVord:
append(ch);
br eak;
}
}
final static int statelnQuoteWrd = 2;
final static int stateQuotel nQuoteWrd = 3;

Oncel get t est Doubl eQuot es() working, | uncomment t est Conmal nDoubl eQuot es()
and discover that it now works! | could choose to eliminate one of the two tests at this point, but
| feel that the different approaches taken to testing the same functionality — one more “black
box” than “white box” — provides better test coverage.

Pass L —More Functionality

Now that the tough part is done, | choose to add some functionality. Comment lines need
to be supported. The new test method t est Conmrent () drives the addition of new functionality:
| public void testConmment() throws | OException { |

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
23

witeln("line 1");

witeln("# coment |ine");

witeln("line 2");

CSVReader reader = get Reader AndCl oseWiter();
reader. next ();

Li st columms = reader.next();

assertEqual s("line 2", colums.get(0));

The corresponding code modifications:

voi d readNextLine() throws | CException {
do
_currentLine = _reader.readLine();
while (_currentLine !'= null && isConmmentLine(_currentLine));

}
bool ean i sComment Li ne(String I|ne) {

return line.charAt(0) == "'#
}

While writing t est Comment (), | mentally note the possibility for an IndexOutOfBounds
exception to be thrown if alineread is empty. Rather than write the code that | think might be
necessary, | decideto write atest (t est Enpt yLi ne()) to determineif thisisindeed the case.

public void testEnmptyLine() throws | OException
{
try {
witeln("");
CSVReader reader = get Reader AndCl oseWiter();
reader. next();
pass();
}
catch (Exception e) {
fail (e.get Message());
}
}

Sure enough, the code throws an exception. | modify the new i sCorment Li ne() method
in CSVReader to handle the special case:

bool ean i sComrent Li ne(String line) {
if (line.length() == 0)
return fal se;
return line.charAt(0) == "#";

}

PassM — Still Moreldeas

What if the entire file consists only of comments? Do we get an error? | add
t est Onl yComment s() , which passes.
public void testOnl yComents() throws | OCException {
witeln("# ...");

CSVReader reader = get Reader AndCl oseWiter();
assert (! reader. hasNext());

}

Not agreat ideafor atest, sinceit passed, but | coded it, and | don’t have a heartache
about leaving it in.

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
24

I’m pretty sure that reading too many records viathe next () method will cause an
exception, but probably not the one | want. | codet est EOF() to call r eader . next () twice,
expecting that the second call generates an I0OEXxception.
public void testEOF() throws | OException {

witeln("x");
CSVReader reader = get Reader AndCl oseWiter();
reader. next ();

try {
reader. next ();

fail ("should have gotten exception");

}

catch (1 Cexception e) {
pass();

}

}
It doesn’t; instead, a Null PointerException is thrown. | modify next () to throw an IOException
if the current lineis null. After that works, | do a minor refactoring since my next () methodis
getting large and doing far too many different things. The new par se(St ri ng) method comes
about via an Extract Method refactoring against next () .

public List next() throws | CException {
if (_currentLine == null)
throw new | OException("Read past end of file in next()");
parse(_currentlLine);
r eadNext Li ne() ;
return get CurrentLineCol ums();

void parse(String line) {
_colums. cl ear();
newWor d() ;
for (int i =0; i <line.length(); i++)
charEvent (li ne.charAt(i));
endd StringEvent () ;

}

Pass N — Whitespace

My current CSV Reader implementation does not account for leading and trailing spaces
accordingly. Spaces and tabs should be trimmed from both ends of a column, unless the spaces
appear within double-quote delimited columns. This requires a modified state diagram (Table 4).
The space events are now handled, and wr i t eWor d isreplaced with the actionwri t eTri mAord in
some circumstances.

Table 4
Actions New State
<init> delim
delim space, \t
delim “ inQuoteWord
delim any other char append char inWord
inWord comma writeTrimWord, delim
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

25

newWord

inWord any other char append char
inWord end of string (eos) writeTrimWord ~ <fini>
inQuoteWord “ writeWord, guotelnQuoteWord
newWord
inQuoteWord any other char append char
(including comma,
space, \t)
guotelnQuoteWord comma delim
guotelnQuoteWord space, \t
guotelnQuoteWord eos <fini>

| createt est St at eWi t espace() to validate thistable.

public void testStateWitespace() throws | OException {

String testlnput =" a ,\th\t";
CSVReader reader = get Reader AndCl oseWiter();

reader. charEvent (' ');
assert Equal s(CSVReader . stateDel im reader.getState());

reader. charEvent ('a');

reader.charEvent (" ');

reader. charEvent (',");

Li st colums = reader. get CurrentLi neCol ums();
assert Equal s("a", colums.get(0));

reader. charEvent ("\t');

reader. charEvent (' b');

reader. charEvent ("\t');

reader. endO StringEvent ();

col ums = reader. get Current Li neCol ums();
assert Equal s("b", colums.get(1));

The resulting code:

voi d charEvent (char ch) {
switch (ch) {

case ',': commaEvent (); break;

case '"': doubl eQuot eEvent (); break;
case '

case '\t': whitespaceEvent(ch); break;
defaul t: def aul t Char Event (ch); break;

}

}

voi d whitespaceEvent (char ch) {
if (_state == stateDelim

el sé
def aul t Char Event (ch) ;
}
voi d commaEvent () {
switch (_state) {
case (statel nWrd):

Evolution of Test and Code Via Test-First Design
Copyright (C) March 2001. All Rights Reserved.
26

Jeff Langr
JLangr@ODbjectMentor.com

writeEndTri mAord();
newWor d() ;
_state = stateDelim
br eak;

case (stateDelin:
_state = statel nWrd;

append(",");
br eak;
case (statel nQuoteWrd):
append(",");
br eak;

case (stateQuotel nQuoteWord):
_state = stateDelim
br eak;

}

voi d endOf StringEvent () {
if (_state == statel nWord)
witeEndTri mAbrd();
el se
witeWsrd();
}
void witeEndTri mMrd() ({
_col ums. add(endTri m(get Current Col um()));

}
String endTrim(String source) {
int i = source.length() - 1;
while (i > -1)
i f (isWhitespace(source.charAt(i)))
i--;
el se
br eak;
return source.substring(0, i + 1);
}
bool ean i sWi tespace(char ch) {
return ch ==" "' || ch == "\t";
}

Pass O — Double Quotes

| write the method t est St at eQuot es() , to ensure that whitespace and quotes were
handled properly. Thisis abad deviation from plan, evidenced by the fact that al assertsin this
test pass on itsfirst execution. In retrospect, | realize that this functionality was added back in
Pass N by virtue of coding the state table.

public void testStateQuotes() throws | OException {

/1 exanple string =" \" x, \" , \"y\" ":
CSVReader reader = get Reader AndCl oseWiter();
sendChar Events(reader, " \" x, \" ");

assert Equal s(

CSVReader . st at eQuot el nQuot eWwrd, reader.getState());
reader. charEvent (',"');
Li st col unms = reader. get CurrentLi neCol ums();

assert Equal s(" x, ", columms.get(0));
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

27

sendChar Event s(reader, " \"y\" ");
reader. endO StringEvent ();

col ums = reader. get Current Li neCol ums();
assert Equal s("y", colums.get(1));

voi d sendChar Event s(CSVReader reader, String string) {
for (int i =0; i < string.length(); i+4)
reader. char Event (string.charAt(i));

}

The more useful thing that comes out of writing thistest isthat | finaly realize | am
writing duplicate test code. Many of the existing test methods call the char Event method over
and over. | write the method sendChar Event s to take a CSVReader and a String as parameters.

Pass P — Empty Columns

| add t est Enpt yFi el ds() to determineif empty columns are handled correctly.

public void testEmptyFields() throws | OException {
witeln("");
witeln(",");
witeln(",a,,,");
CSVReader reader = getReader AndCl oseWiter();
Li st columms = reader.next();
assert Equal s(1, columms.size());
assert Equal s("", colums.get(0));
col ums = reader. next();
assert Equal s(2, columms.size());
col ums = reader. next ();
assert Equal s(5, colums. size());

}

They are not. | modify the code in cormaEvent () accordingly.

voi d commaEvent () {
switch (_state) {
case (statelnWrd):
writeEndTri mord();
newwbr d() ;
_state = stateDelim
br eak;
case (stateDelin:
witeWsrd();
br eak;
case (statelnQuoteWrd):
append(',");
br eak;
case (stateQuotel nQuoteWord):
_State = stateDelim
br eak;
}
}

When acomma event was received whilein st at eDel i m | was previously changing the
state to st at el nWor d and appending the comma. The code now just callsthewr i t eWor d()

method.

Evolution of Test and Code Via Test-First Design

Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

28

| also add t est Unmat chedDoubl eQuot el sAnError () . If thelast column in arecord
starts with a double quote, but another quote is not received before the end of the string, an error
should be thrown.

public void testUnnmat chedDoubl eQuot el SAnErr or ()
t hrows | OException {
witeln("\"jkl");
CSVReader reader = get Reader AndCl oseWiter();
try {
reader. next () ;
fail ("should have thrown | O exception");

}

catch (1 OException e) {
pass();

}

}

TheendO St ri ngEvent () method is modified accordingly. It now throws an
|OException, and therefore so must the par se method.

voi d parse(String line) throws | CException {
_colums. cl ear ();
newor d() ;
for (int i =0; i <line.length(); i++)
charEvent (li ne.charAt(i));
endOF StringEvent () ;

void endOF StringEvent () throws | OException {
switch (_state) {
case statel nWrd:
writeEndTri mord();
br eak;
case statel nQuot eWrd:
t hrow new | CExcepti on(
"Badly formed record: quoted string not term nated");
def aul t:
writeWword();
br eak;

}

}

Pass Q — Embedded Double Quotes

| wrote the initial CSV Reader, alowing for quotes to be embedded within a column, just
as long as the string representing a column was flanked with double quotes. This ends up being a
poor definition, if not ill-defined in some situations.

My final test is to introduce completely new functionality: | want to allow double-quotes
within acolumn if they are escaped (i.e. prefixed with a backslash), a much simpler
implementation.

The state machine has to be modified dlightly. Table 5 shows the relevant state
modifications only.

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
29

Table 5

Actions New State
inQuoteWord \ escapelnQuote
escapel nQuote “ append “ inQuoteWord
escapel nQuote any other char append \ inQuoteWord

append char

| writet est EnbeddedQuot es() to build the new state behavior.

public void test EnbeddedQuotes() throws | OException {

/[l example: " \" x \\\"y \" z" -->" x\"y" | z
CSVReader reader = get Reader AndCl oseWiter();
sendChar Event s(reader, " " + quote + " x " + backsl ash);

assert Equal s(CSVReader . st at eEscapel nQuote, reader.getState());
reader. char Event (quot e) ;

assert Equal s(CSVReader . st at el nQuot eWbrd, reader.getState());
sendChar Event s(reader, "y " + quote + ",");

Li st colums = reader. get CurrentLi neCol ums();

assert Equal s(" x \"y ", colums. get(0));
}
final char backslash = "\\';
final char quote = "\"";

| also writet est EscapeChar NoQuot e() to ensure that the backslash character is handled

correctly if not followed by a double-quote character.

public void testEscapeChar NoQuote() throws | OException {
/1l example: "\"a\b\"" --> "a\\b"
CSVReader reader = get Reader AndCl oseWiter();
sendChar Event s(reader, quote + "a" + backslash + "b" + quote);
assert Equal s(
CSVReader . st at eQuot el nQuot eWord, reader.getState());
reader. endO StringEvent ();
Li st colums = reader. get CurrentLi neCol ums();
assert Equal s("a" + backslash + "b", colums.get(0));

}

The code modifications to support these two tests are as follows. Time elapsed to add the

last two tests and corresponding code was about ten minutes.

voi d charEvent (char ch) {
switch (ch) {

case ',': commaEvent (); break;

case '"': doubl eQuot eEvent (); break;
case '

case '\t': whitespaceEvent(ch); break;
case "\\' 1 backsl ashEvent (ch) ;| br eak;
defaul t: defaultChar Event (ch); break;

}

voi d backsl ashEvent (char ch) {
if (_state == statel nQuot eWrd)
_Sstate = stateEscapel nQuot e;
el se
def aul t Char Event (ch) ;

}
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

30

mailto:JLangr@ObjectMentor.com

voi d doubl eQuot eEvent () {
switch (_state) {
case stateDelim
_state = statel nQuot eWrd,

br eak;

case statel nWrd:
append(""");
br eak;

case statel nQuot eWord:
_state = stateQuotel nQuot eWrd;
writewsrd();
newMor d() ;
br eak;
case stateEscapel nQuot e:
_state = statel nQuoteWord,;
append(’"");
br eak;

}

voi d defaul t Char Event (char ch) {
switch (_state) {

case stateDelim
_state = statel nWrd;
append(ch);
br eak;

case statel nWord:
append(ch);
br eak;

case statel nQuot eWord:
append(ch);
br eak;

case stateEscapel nQuot e:
append("\\");

append(ch);
_state = statel nQuoteWrd;
br eak;

}
}

final static int stateEscapel nQuote = 4;

Final Code

| chose not to include the final set of tests, for space considerations, since they are well
represented in the document above. If you are interested in a copy of CSVReaderTest.java,
please email me at JLangr@ObjectMentor.com.

The final CSVReader.java code isincluded, however.

CSVReader.java, built via TfD

i mport java.io.*;
i mport java.util.?*;
public class CSVReader

{

public CSVReader (String filenane) throws | OException {
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

31

if (!'new File(filenane).exists())
t hrow new | OException();
_reader = new BufferedReader (
new j ava.io. Fi |l eReader (fil ename));
r eadNext Li ne() ;

}
publ i c bool ean hasNext () {
return _currentLine !'= null;

public List next() throws | OException {
if (_currentLine == null)
t hrow new | OExcepti on(
"Read past end of file in next()");
par se(_currentLine);
r eadNext Li ne() ;
return get CurrentLineCol ums();
}
void parse(String line) throws | OException {
_columms. cl ear ();
newMor d() ;
for (int i =0; i <line.length(); i++)
char Event (line.charAt(i));
endOf StringEvent () ;

voi d readNextLine() throws | OException {
do
_currentLine = _reader.readLine();
while (_currentLine !'= null &&
i sComent Li ne(_currentlLine));

}
int getState() {

return _state;
}

String getCurrentWord() {
return _currentWrd;
}

String getCurrent Col um() {
return _columBuffer.toString();
}

Li st get CurrentLineCol ums() {
return _col ums;

voi d charEvent (char ch) {
switch (ch) {

case ',': commaEvent (); break;

case '"': doubl eQuot eEvent () ; br eak;
case ' ':

case '\t': whitespaceEvent(ch); break;
case '\\': backsl ashEvent (ch); break;
defaul t: def aul t Char Event (ch); break;

}

voi d backsl ashEvent (char ch) {
if (_state == statel nQuot eWrd)

Evolution of Test and Code Via Test-First Design
Copyright (C) March 2001. All Rights Reserved.
32

Jeff Langr
JLangr@ODbjectMentor.com

_state = stateEscapel nQuot e;
el se
def aul t Char Event (ch);
}
voi d whi tespaceEvent (char ch) {
if (_state == stateDelin)

el se
def aul t Char Event (ch);
}
voi d commaEvent () {
switch (_state) {
case (statel nWord):
writeEndTri mAord();
newMor d() ;
_state = stateDelim
br eak;
case (stateDelin):
writeWsrrd();
br eak;
case (statel nQuoteWrd):
append(’,");
br eak;
case (stateQuotel nQuoteWrd):
_state = stateDelim
br eak;

}

}
voi d doubl eQuot eEvent () {
switch (_state) {
case stateDelim
_state = statel nQuoteWrd;

br eak;

case statel nWrd:
append(’"");
br eak;

case statel nQuot eVor d:
_state = stateQuotel nQuot eWrd;
writewsrd();
newMor d() ;
br eak;
case stateEscapel nQuot e:
_state = statel nQuot eWrd,;
append('"");
br eak;

}

voi d defaul t Char Event (char ch) {
switch (_state) {
case stateDelim
_state = statel nWrd;
append(ch);
br eak;
case statel nWrd:

Evolution of Test and Code Via Test-First Design
Copyright (C) March 2001. All Rights Reserved.
33

Jeff Langr
JLangr@ODbjectMentor.com

append(ch);
br eak;

case statel nQuot eWord:
append(ch);
br eak;

case stateEscapel nQuot e:
append('\\");

append(ch);
_state = statel nQuot eWrd,
br eak;

}
}
void witeWrd() {

_col umms. add(get Current Col uim());
}

voi d newword() {
_columBuffer.delete(0, _columBuffer.length());

voi d append(char ch) {
_col umBuf f er . append(ch);

}
void endOF StringEvent() throws | OException {
switch (_state) {
case statel nWrd:
writeEndTri mMrd();
br eak;
case statel nQuot eVor d:
t hr ow new | OExcepti on(
"Badly formed record: quoted string not term nated");
defaul t:
writeWwsrd();
br eak;
}
}
void witeEndTri mAord() {
_col umms. add(endTri m(get Current Col uim()));

}
String endTrim(String source) {
int i = source.length() - 1;
while (i > -1)
if (iswWitespace(source.charAt(i)))
i--;
el se
br eak;
return source.substring(0, i + 1);
}
bool ean i s\Witespace(char ch) {
return ch ==" "' || ch == "\t";
}

bool ean i sConment Li ne(String line) {
if (line.length() == 0)
return false;

return line.charAt(0) == "#";
}
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

34

private String _currentColum = "";

private StringBuffer _columBuffer = new StringBuffer();
private List _columms = new ArrayList();
private String _currentWord = "";

privat e BufferedReader _reader;

private String _currentlLine;

private int _state = stateDelim

final static int stateDelim= 0;

final static int statelnWord = 1;

final static int statelnQuoteWrd = 2;
final static int stateQuotelnQuoteWord = 3;
final static int stateEscapel nQuote = 4;

}

CSVReader.java, circa 1998

i mport java.io.BufferedReader;
i mport java.io. | OException;
i mport java.util.List;
public class CSVReader {
CSVReader (String filenane) throws | OException {
_reader = new BufferedReader(new java.io. Fil eReader(fil ename));
| oadNext NonConmmrent Li ne() ;

public List next() throws | OException {
if (_line == null)
t hrow new | OException("Read past end of file");
Li st colums = col unmsFromCSVRecord(_I|ine);
| oadNext NonCommrent Li ne() ;
return col ums;

publ i c bool ean hasNext () {
return line !'= null;

}
voi d | oadNext NonComment Li ne() throws | OException {

do

_line = _reader.readLine();
while (_line !'= null && _line.startsWth(COMVENT _SYMBQL));
if (_line == null)

_reader.close();
}
Li st col umsFronCSVRecord(String line) throws | OException {
char state = statelNT;
char ch;
int i =0;
Li st tokens = new java. util.ArrayList();
StringBuffer buffer = new StringBuffer();
char[] charArray = line.toCharArray();
while (i < charArray.length) {
ch = charArray[i ++];
switch (state) {
case statelNIT:
switch (ch) {
case '"':
buf f er. append(ch);

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
35

state = stat eQUOTED_DATA,
br eak;

case ',':
state = stat eNEW TOKEN,
t okens. add(cl ean(buffer));
buffer = new StringBuffer();
br eak;

case '\t': case
br eak;

case '#':
state = stat eCOMVENT,;
br eak;

defaul t:
state = stat eDATA;
buf f er. append(ch);
br eak;

}

br eak;
case stat eCOVMENT:
br eak;
case stateQUOTED DATA:
switch (ch) {
case '"':
buf f er. append(ch);
state = stateQUOTE | N QUOTED DATA,;

br eak;
defaul t:
buf f er. append(ch);
br eak;
}
br eak;

case stateQUOTE_| N QUOTED_DATA:
switch (ch) {
case '"':
state = stat eQUOTED_DATA,
br eak;
case ',':
state = stat eNEW TOKEN,
t okens. add(cl ean(buffer));
buffer = new StringBuffer();
br eak;
case ' ':
br eak;
case '#':
t okens. add(cl ean(buffer));
state = stat eCOMVENT,;
br eak;
defaul t:
t hrow new | CExcepti on(
"badly formed CSV record:" + line);

case '\t':

}

br eak;
case st at eDATA:
switch (ch) {

case '#':
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

36

t okens. add(cl ean(buffer));
state = stat eCOMVENT,;
br eak;
case ',':
state = stat eNEW TOKEN,
t okens. add(cl ean(buffer));

buffer = new StringBuffer();

br eak;
defaul t:
buf f er. append(ch);
br eak;
}
br eak;

case st at eNEW TOKEN:
switch (ch) {

case '#':
t okens. add(cl ean(buffer));
state = st at eCOMVENT;
br eak;

case ',':
t okens. add(cl ean(buffer));
buffer = new StringBuffer();

br eak;

case ' ': case '\t':
state = stat eWH TESPACE;
br eak;

case '"':

buf f er. append(ch);
state = stat eQUOTED DATA;
br eak;
defaul t:
state = st at eDATA;
buf f er. append(ch);
br eak;
}
br eak;
case st at eWH TESPACE:
switch (ch) {
case '#':
state = st at eCOMVENT;
br eak;
case ',':
state = stat eNEW TOKEN,
!/ ACCEPT NEW EMPTY COLUWN HERE??
br eak;
case '"':
buf f er. append(ch);
state = stat eQUOTED DATA;
br eak;
case ' ':
br eak;
defaul t:
state = st at eDATA;
buf f er. append(ch);

case '\t':

br eak;
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

37

}

}

br eak;
defaul t:
br eak;
}
}
if (state == stateQUOTED DATA)
t hrow new | OException(" Unmat ched quotes in line:\n" + |line);
if (state != stateCOVVENT)
t okens. add(cl ean(buffer));
return tokens;
}
String clean(StringBuffer buffer) {
String string = buffer.toString().trim);
if (string.startsWth(DOUBLE_QUOTE))
return string.substring(l, string.length() - 1);
return string;

}
private BufferedReader _reader;
private String _line;

private static final String DOUBLE QUOTE = "\"";

private static final String COMENT_SYMBOL = "#";

private static final char statelINNT ="'S';

private static final char stateCOVWENT = '#';

private static final char stateQUOTED DATA = 'q';

private static final char stateQUOTE_| N QUOTED DATA = 'Q ;
private static final char stateDATA = 'D ;

private static final char stateNEWTOKEN = 'N ;

private static final char stateWH TESPACE = 'W;

OO0OO0O0O0O0O0O00OO0

CSVReaderTest.java, 23-Feb-2001

i mport junit.framework. *;

i mport java.io.*;

i mport java.util.?*;

public class CSVReader Test extends Test Case

{
publ i c CSVReader Test(String name) ({
super (nane) ;
}
public void setUp() throws | OException {
filenanme = "CSVReader Test.tnp.csv";
witer = new BufferedWiter(new FileWiter(filenane));
}
public void tearDown() throws | OException {
new Fil e(filenane).delete();
}
public void testCreate() throws | OException {
CSVReader reader = get Reader AndCl oseWiter();
assert (! reader. hasNext());
}
public void testSingl eRecordSi ngl eField() throws | OException {
witeln("test");
CSVReader reader = get Reader AndCl oseWiter();
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

38

assert (reader. hasNext ());
Li st colums = reader. next();
assert Equal s(1, col ums.size());
assert Equal s("test", columms.get(0));
}
public void testSingleFieldwltipleColums() throws | OException {
witeln("test2col 1, test2col 2");
CSVReader reader = get Reader AndCl oseWiter();;
assert (reader. hasNext ());
Li st colums = reader.next();
assert Equal s(2, columms.size());
assert Equal s("test2col 1", colums.get(0));
assert Equal s("test2col 2", colums.get(1));
}
public void testEOF() throws | OException {
witeln("linel);
CSVReader reader = get Reader AndCl oseWiter();
reader. next ();
try {
reader. next () ;
fail ("expected exception here");

}

catch (1 OCException e) {
pass();

}

public void testMultiplelLines() throws | OException {
witeln("linel");
witeln("line2,1ine2");
witeln("line3");
CSVReader reader = get Reader AndCl oseWiter();
assert Equal s(1, reader.next().size());
assert Equal s(2, reader.next().size());
assert Equal s(1, reader.next().size());
assert (! reader. hasNext());

}

public void testConmment() throws | OException {
writeln("linel data");
writeln("# this is a conent");
String Iine3data = "line3, sone, dat a, col uims";
witeln(line3data);
CSVReader reader = get Reader AndCl oseWiter();
reader. next () ;
Li st |ine3Col ums = reader. next();
assert Equal s("line3", |ine3Colums.get(0));
assert (! reader. hasNext());

}

public void test MoreComents() throws | OException {
writeln("# ok");
witeln("# well?");
CSVReader reader = get Reader AndCl oseWiter();
assert (! reader. hasNext());

}

public void testDoubl eQuotedData() throws | OException {
witeln("1015 Tenth Street,\"Laurel, NMD 20707\", US");

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
39

CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader. next();
assert Equal s(3, colums. size());
assert Equal s("1015 Tenth Street", colums.get(0));
assert Equal s("Laurel, MD 20707", colums.get(1));
assert Equal s("US", columms.get(2));
}
public void test MreThanOneComral nDoubl eQuot edDat a()
t hrows | OException {
witeln("1015 Tenth Street,\"Laurel, NMD 20707, US\"");
CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader. next();
assert Equal s(2, colums. size());
assert Equal s("1015 Tenth Street", columms.get(0));
assert Equal s("Laurel, MD 20707, US', colums.get(1));
}
public void test EmbeddedQuot esArePart Of String() throws | OException {
witeln("1015 Tenth Street, Jeff \"ACQ" Langr, 1964");
CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader.next();
assert Equal s(3, columms.size());
assert Equal s(" 1015 Tenth Street", columms.get(0));
assert Equal s("Jeff \"AC\" Langr", columms.get(1));
assert Equal s("1964", columms.get(2));
}
public void testSingl eEnbeddedDoubl eQuot el sPart Of Stri ng()
throws | OException {
witeln("normally you woul dn\"t do this");
CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader.next();
assert Equal s(1, columms.size());
assert Equal s("normal Iy you woul dn\"t do this", colums.get(0));
}
public void testUnmat chedDoubl eQuot el sAnError () throws | CException {
witeln("\"jkl");
CSVReader reader = get Reader AndCl oseWiter();
try {
reader. next () ;
fail ("should have thrown | O exception");

}
catch (1 Oexception e) {
pass();
}
}

public void testEmptyFields() throws | OException {
witeln("");
witeln(",");
witeln(",a,,,");
CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader.next();
assert Equal s(1, columms.size());
assert Equal s("", columms. get(0));
colums = reader. next();
assert Equal s(2, colums. size());
col ums = reader. next ();

Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com
40

assert Equal s(5, columms.size());

}

public void testTrim() throws | OException {
writel n(

this , is ,\tthe end\t, \t of , it, all ");

CSVReader reader = get Reader AndCl oseWiter();
Li st colums = reader.next();
assert Equal s(6, colums. size());
assert Equal s("this", columms.get(0));
assert Equal s("is", columms.get(1));
assert Equal s("t he end", colums.get(2));
assert Equal s("of", columms. get(3));
assert Equal s("it", colums.get(4));
assert Equal s("all", colums.get(5));

public void testNotTrim() throws | OException {

writel n(

A this should be flanked by white space \"");

CSVReader reader = get Reader AndCl oseWiter();

Li st colums = reader.next();

assert Equal s(1, columms.size());

assert Equal s(

this should be flanked by white space ", colums.get(0));
}
int witeln(String string) throws | OException {

witer.wite(string, 0, string.length());

witer.wite("\r\n", 0, 2);

return string.length() + 2;

}

CSVReader get Reader AndCl oseWiter() throws | OException {
writer.close();
return new CSVReader (fil enane);

}

final void pass() {}

private String fil enamne;

private BufferedWiter witer;

}
Evolution of Test and Code Via Test-First Design Jeff Langr
Copyright (C) March 2001. All Rights Reserved. JLangr@ODbjectMentor.com

41

	Evolution of Test and Code Via Test-First Design
	
	
	March 2001

	Author
	Acknowledgments
	I
	Introduction
	Background
	Realizations
	Disclaimers
	Conclusions

	TfD Detailed Example – The CSVReader Class
	Origins
	JUnit Test Classes
	Getting Started
	Pass A – Test Against an Empty File
	Pass B –Read Single Record
	Pass C – Refactoring
	Pass D – Read Single Record, continued
	Pass E – Read Two Records
	Pass F – Two Columns
	Pass G – Multiple Columns
	Pass H – State Machine
	Table 1

	Code Smells
	Pass I – Two Columns
	Pass J – Plugging In The State Machine
	Pass K – Comma In Double Quotes
	Pass L – More Functionality
	Pass M – Still More Ideas
	Pass N – Whitespace
	Pass O – Double Quotes
	Pass P – Empty Columns
	Pass Q – Embedded Double Quotes
	Final Code
	CSVReader.java, built via TfD
	CSVReader.java, circa 1998
	CSVReaderTest.java, 23-Feb-2001

