
ThePragmatic
Bookshelf

PragPub
The Second Iteration

Issue #70
April 2015

IN THIS ISSUE

* DON’T BE LATE!
GETTING STARTED WITH
APPLE WATCH DEVELOPMENT
by Jeff Kelley

* The objc.io guys on functional
programming in Swift

* Jeff Langr on distributed teams
* Adam Tornhill on the people

in your codebase
* Plus Rothman and Lester on

dealing with recruiters,
Marcus Blankenship on
transitioning to manager,
Antonio Cangiano on books,
our monthly pub quiz...

* ...and John Shade on feeding
plastic trash to 3D printers

PragPub • April 2015

Contents

FEATURES

A Timely Essay on Apple Watch App Development 14
by Jeff Kelley

Wait! Don’t build that Apple Watch app yet. In this article, Jeff walks you through the questions you need to answer in
conceiving of, designing, and producing an Apple Watch app.

Functional Snippets .. 18
by Chris Eidhof, Wouter Swierstra, and Florian Kugler

The next installment in our new series on functional programming in Swift.

Rule #1 for Distributed Teams ... 19
by Jeff Langr

Distributed development teams face some daunting challenges. Jeff has been there and knows how to solve them.

Meet the Social Side of Your Codebase ... 26
by Adam Tornhill

You can read the structure of the organization that produced a piece of code in the code’s history — which will reveal
clues to solving deep development problems.

— i —

DEPARTMENTS

On Tap .. 1

Swaine’s World .. 3
by Michael Swaine

We follow Twitter so you don’t have to.

Rothman and Lester ... 7
by Johanna Rothman and Andy Lester

Why recruiters are the way they are, and what to do about it.

New Manager’s Playbook ... 11
by Marcus Blankenship

I thought I was getting a promotion. Why do I feel like I’ve lost something important?

Antonio on Books ... 36
by Antonio Cangiano

Antonio looks at all the new tech books of note.

Pragmatic Bookstuff .. 39
Want to meet one of the Pragmatic Bookshelf authors face-to-face? Here’s where they’ll be in the coming months. Also,
find out which are the top-selling Pragmatic Bookshelf books and what new books are coming out.

Solution to Pub Quiz .. 42

Shady Illuminations .. 43
by John Shade

Can 3D printers clean up our beaches? And why does Slate hate metal detecting?

Except where otherwise indicated, entire contents copyright © 2015 The Pragmatic Programmers.

You may not sell this magazine or its content, nor extract and use more than a paragraph of content
in some other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail webmaster@swaine.com. The editor is Michael Swaine (michael@pragprog.com).
Visit us at http://pragprog.com for the lowdown on our books, screencasts, training, forums, and more.

ISSN: 1948-3562

— ii —

http://pragprog.com

On Tap
Feed Your Head You can download this issue at any time and as often as you like in any or all of our

three formats: pdf [U1], mobi [U2], epub [U3].

Down the Rabbit Hole
You're thinking, like Lewis Carroll’s White Rabbit, that you don’t want to be
late to the party. You’re checking your watch and imagining the apps you’ll
develop for it. But before you follow the fuzzy fellow down the rabbit hole,
maybe you should pause to think about this new Apple Watch programming
opportunity.

Like the move from desktop applications to mobile apps, this Watch thing is
a paradigm shift. You won’t be merely porting your phone apps to the watch,
or even your phone app concepts. It’s a whole new game.

Jeff Kelley’s upcoming Developing for Apple Watch is a great way to get
introduced to Apple Watchkit development. But Jeff’s article in this month’s
PragPub is something different. In it, Jeff writes about how to think about Watch
apps, what to consider before you start coding — or even before you start
imagining — your first Watch app. It’s an exercise in thinking in this new
paradigm.

Also in this issue, we have a mind-altering article by Adam Tornhill on getting
to know the social side of your codebase. Adam’s book Your Code as a Crime
Scene [U4], inspired by forensic psychology methods, teaches strategies to predict
the future of your codebase, assess refactoring direction, and understand how
your team influences the design. In this article, he shows you how the structure
of your organization can be read out of the history of your codebase — and
how that can help shape your thinking about your projects.

Jeff Langr, no stranger to the pages of PragPub, revisits his own coding history
and finds it necessary to revise one of his basic principles. Along the way he
shares some hard-won insights on how to make distributed development teams
work.

And there’s more. Expert iOS developers Chris Eidhof, Wouter Swierstra, and
Florian Kugler are back again with another bit of functional Swift code.
Johanna Rothman and Andy Lester offer sage advice on dealing with recruiters.
Marcus Blankenship has some encouraging words if you’ve just made the
transition to manager and are having some misgivings. Anthony Cangiano
has again tracked down all the new tech books, John Shade worries about the
diet of 3D printers, and we have a selection of tasty tweets, a Pub Crawl of
sites to see, and our regular Pub Quiz — which is really more of a
sudoku-anagram mashup, but Pub Sudoku-Anagram Mashup just sounds odd.

PragPub April 2015 1

https://s3-us-west-2.amazonaws.com/pp-15-04/PP-15-04.pdf
https://s3-us-west-2.amazonaws.com/pp-15-04/PP-15-04.mobi
https://s3-us-west-2.amazonaws.com/pp-15-04/PP-15-04.epub
https://pragprog.com/book/atcrime/your-code-as-a-crime-scene
https://pragprog.com/book/atcrime/your-code-as-a-crime-scene

Who Did What
photo credits: Cover: “Alice Meets the White Rabbit” [U5] by Margaret Tarrant is licensed under
Creative Commons [U6]. • p. 14: “Nice! Dick Tracy went for the Pink Apple Watch” [U7] by Alan Levine
is licensed under Creative Commons [U8]. • p. 18: chimney swift [U9] by Ed Schipul is licensed under
Creatuve Commons [U10]. • p. 19: “System, Network, News” [U11] by geralt is licensed under Creative
Commons [U12]. • p. 26: “Computer/Communication” [U13] by geralt is licensed under Creative
Commons [U14].

editing and production: Michael Swaine

editing and research: Nancy Groth

customer support, subscriptions, submissions: webmaster@swaine.com

staff curmudgeon: John Shade (john.shade@swaine.com)

PragPub April 2015 2

https://www.flickr.com/photos/43021516@N06/4382428505/in/photolist-8APkmi-7Fg6ja-8EkdzT-dBQqK-9ytbWh-7Fg6rK-n7bn1i-7bMJ83-9dYhoS-7bMK6S-62URRN-89XqtF-nR3xvd-9p4Vd5-8kziDM-twE5w-HjFmu-9cmDG1-mGBkSu-mGBjCW-7bMQHN-6k5Zo4-7Fg6si-7HwJDp-9XynRk-pWyR3V-pNTDMn-pWqXrf-7bMNg9-nq4zya-5ARAd2-7cc1ZC-7bHW5k-9dYhfN-oBCRTN-9xqsb8-n7bqGr-6JfKDW-7hn83B-7bHZUv-n7bwx2-f7Hhwj-9V9R5u-bDZpsd-77iGHq-6k9VML-6XEC33-5r12C-5kSQ7d-6k9uLu
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/cogdog/15005437168/in/photolist-9DM3GA-q7bQta-oRYMFW-cLDXh-7EqiY
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/eschipul/
https://creativecommons.org/licenses/by/2.0/
http://pixabay.com/en/system-network-news-personal-71228/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
http://pixabay.com/en/social-networks-faces-photo-album-550774/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

Rule #1 for Distributed Teams
The 2015 Edition

by Jeff Langr

Distributed development teams face some daunting
challenges. Jeff has been there and knows how to
solve them.

The first rule for distributed teams is: Don’t [U1].

Had my co-author Tim Ottinger crafted the second rule to be again Don’t, à
la Fight Club [U2] (“The first rule of Fight Club is: you do not talk about Fight
Club. The second rule of Fight Club is: you DO NOT talk about Fight Club!”),
I might not have found myself in the awkward position of promoting distributed
teams in this article.

When we compiled the rules for distributed teams for the Agile in a Flash blog
back in June of 2011, Tim and I had various joint and disjoint experiences
working with and in distributed teams. We were both remote developers for
a now defunct company named GeoLearning for almost all of 2010. We poured
our mixed experiences into the rules.

Nearly four years later, I’ve added almost two more years’ experience as a
remote developer for Outpace, where we’ve made distributed teams a successful
reality — and even a competitive advantage in some ways. We’ve also managed
to validate the rest of the rules.

At Outpace, we follow the Agile in a Flash Rules [U3] for Distributed Teams:

• Almost all of us are remote, so we don’t leave “satellite” workers in the
dark.

• We don’t prevent co-location where it makes sense — a number of our
business folks work together daily.

• We understand that “longitude kills,” so we restrict our hiring to folks
who can pair during the same core hours (roughly 8 a.m. through 5 p.m.
Mountain time, or 10 a.m. to 7 p.m. Eastern time).

• We’re not always remote — we get together as a whole team a couple of
times a year to better understand and appreciate each other as real people,
not just faces on a computer screen. People in some of our busier cities
(such as San Francisco, Chicago, and Calgary) get together after hours
at times for drinks, and fourteen recently met up for a skiing weekend in
Jackson Hole.

Beyond having a solid business model and product vision, other core factors
that have contributed to our success include:

• A flat organizational structure. For the most part, there are business folk,
and there are developers. No one’s full-time job is management. From
the development side, we’ve designated team leads whose primary
responsibility is to be on point for communications with the business and
other teams. From the business side, most everyone is a domain expert
who works closely with the development team to impart and clarify the

PragPub April 2015 19

http://agileinaflash.blogspot.com/2011/04/rules-for-distributed-teams.html
http://www.imdb.com/title/tt0137523/quotes
https://pragprog.com/book/olag/agile-in-a-flash

business needs. Our simple structure has increased transparency, simplified
communication channels, and allowed us to pay more for people who
know how to get the job done.

• A broad set of high-tech collaboration tools. We talk to each other face-to-face
via Zoom video chats. We text each other privately and publicly via Slack
channels. We plan collaboratively using Trello and TargetProcess. We
document collaboratively using Google Docs and Google Sites. We even
resort to email from time to time!

• Paired development. The bulk of my day involves collaborating with other
developers online. Pairing keeps us on track and helps ensure a higher
quality solution. It also brings back the necessary social interaction that
remote work removes. You don’t have the opportunity to feel lonely or
isolated when pairing is the norm.

• Hiring sharp team members. Rather than focus on technologies, we seek
experienced developers who are good at solving problems as part of a pair
and team. We’ve passed on sharp candidates who showed disinterest in
extensive pairing or who were unable to verbalize their thought processes
as they worked through solutions.

• A focus on high-quality code. We write lots of unit tests for our code, and
have rarely shipped logic defects. We’ve been increasing the amount of
acceptance-level testing steadily as well.

An Outpace Day
(Note: The following synopsis is an amalgamation of real day-to-day events,
not a single actual day — I’m way too lazy to keep such a detailed log. It’s also
a slightly out-of-date one at that — things can move fast at Outpace, and I’ve
moved into a different team recently.)

• 7:47 a.m. I finish reading the news. I meander back upstairs, brush my
teeth, and slip on a pair of comfy boots — I’ll be standing for a good part
of my day.

• 7:51:00 a.m My commute begins.

• 7:51:09 a.m. I arrive safely at my desk in my office, located off the family
room. I push my chair aside, hit the #2 preset on my Jarvis sit/stand desk,
and wait until it rises to 42.2".

• 7:52 a.m. I spend a few minutes perusing Slack chat and email. I check
the status of the deployed system. All is well.

• 7:58 a.m. I take a look at the stand-up document, shared in Google Drive.
As usual, a few people are adding short sentences to today’s bulleted list.
I note that Paul, our team’s primary business person, is in the act of bolding
one of the bulleted items, indicating that he wants to talk about it. I read
the ones not bolded — we won’t discuss these, they are more “FYI.”

• 8:00 a.m. I hit the link for our stand-up’s Zoom video chat. Less than
twenty seconds past 8 a.m., eight people have joined. I kick things off by
asking Paul to talk about the item he bolded. The customer has asked for
a change in the way we process their external events feed. We discuss a

PragPub April 2015 20

solution for a minute, and end with a brief plan of what we’ll tackle today.
We talk through the other two bolded items similarly, then ask if anyone
plans on deploying to production today. Tanya, from the core product
team, responds that she and her pair will be finishing testing their
persistence changes this morning, and plan on deploying around mid-day.
Nate, also from the core product team, adds that he and his pair would
like us to review a pull request for code changes in the customer repository.
We agree and let him know we’ll take a look soon.

• 8:08 a.m. Stand-up complete. I fill my glass of water in the kitchen.

The use of the shared document has been a great boon to facilitating our stand-up
meetings. Useful information ends up in as bullets that people can quickly scan,
asking questions if needed. Otherwise the owners of the bolded items speak up when
it’s their turn.

We had initially tried a number of different flows for stand-ups. Having someone
prod everyone during the stand-up seemed annoying, and trying to get people to
randomly speak up didn’t seem to work well either.

The shared Google document makes things simple and straightforward, and holds up
well in larger meetings (we’ve had some video stand-ups involving 25-30 folks).

• 8:09 a.m. I start looking at Nate’s pull request in GitHub. Mario, my pair
for the day, does the same. We send a few text messages to each other in
a private Slack channel, and as a result, end up making a few comments
about the code on the GitHub pull request page. The comments show
up in Slack. Nate sees the comments, which starts a brief Slack exchange
that ends with Nate going off to clean up the code.

• 8:20 a.m. I initiate a Zoom session and invite Mario. We’re going to pair
on a change to our order service regarding how we filter out offers for
unavailability. First, we move the card in our development board in Trello
from the Iteration Backlog to the In Progress column.

We discuss the change for a few minutes, looking at some related code and
tests to better understand what we’re up against. When we’re ready to work
on the solution, I join a tmate session that Mario has started in a large terminal
window on his machine. Since our code is in Clojure, Mario cranks up emacs
in the terminal window. He loads the unit tests and the .clj file for the
production source. While he’s looking at the code, I split the tmate window
and start lein-test-refresh (a utility built by Outpacer Jake McCrary that aids
in re-running tests; see lein-test-refresh [U4] in a short terminal window at the
bottom. All tests pass, so we start test-driving our solution.

Does it sound like we’re a dogmatic agile-ish shop? We really don’t have a lot of
standards. Everyone has the same hardware setup — MacBook Pros with a couple
of Thunderbolt monitors for screen sharing — which makes screen sharing a bit more
effective. Process-wise, we’re expected to pair as much as makes sense, we are
expected to be at the stand-up meetings, we write unit tests for our code, and we
ensure the code gets tested before going into production. Few formalities exist for
these expectations, and there are no further demands. What ends up mattering more
is the implied standards that teams create for themselves, and even those can change
at the whim of a pair.

PragPub April 2015 21

https://github.com/jakemcc/lein-test-refresh

Editors/IDEs in play include primarily emacs, vim, and IntelliJ (and we’ve seen a
bit of Eclipse, Sublime, and LightTable); languages in play include primarily Clojure
and CoffeeScript or ClojureScript, plus a bit of Ruby and Python. Programming
approaches in play include REPL-driven development, TDD, and TAD (test-after
development). Our first six months involved a flurry of experimentation and
exploration with techniques, tools, and libraries. The flurries have mostly settled,
though we’re not averse to changing direction as needed.

We’re not afraid of new technologies, but we’ve surpassed the need to play with new
toys just for geek gratification. Our stack has become a balance of tools that hold up
well to our system’s high-volume demands (minus a few things that didn’t pan out
quite as well that we’ll soon jettison).

• 9:15 a.m. We’re mulling over a sticky part of our change. I get up to clear
my head for a minute, and refill my glass of water. So does Mario.

• 9:17 a.m. Mario has hit upon a potential solution. He scratches out our
next test. Some days, today included, we feel like ping-ponging. I provide
some Clojure code that gets the test to pass, and write another one,
watching it fail first. Mario puts up a solution, gets the test to pass, and
we each do a small bit of refactoring cleanup.

We used the Mac’s built-in Screen Share application for a good while. Pairing sessions
ended up being more “worker-rester” (see the Agile in a Flash card #37, “Pair
Programming Smells” [U5]), where the host — the person sharing their desktop for
the session — does most of the driving, and the other party to the pair observes and
pipes up as needed, occasionally hitting the keyboard. Unfortunately, the remote
programmer is at a significant disadvantage — the lag time between typing a character
and seeing it reflected on the host’s screen can be a half-second or so, making for a
frustrating experience.

To improve the lag time, Mario and I switched full-time to the terminal multiplexer
tmate (a fork of tmux that simplifies and secures the connection process), which
allows us to share a terminal window. We do the bulk of our work in a terminal
window, which becomes an inviting space for the remote party — character-mode
transmission means we almost never see any real lag time when keying into a remote
tmux session. If we need to show something outside the terminal (e.g., the browser),
we simply share the screen using Zoom. (I’ve even toyed with the idea of bringing
the text-based browser Lynx into the mix. :-))

Beyond the initial keyboard and color configuration hurdles (Brian Hogan’s book
tmux: Productive Mouse-Free Development [U6] provides some great advice here),
we’ve run into a few odd curveballs that tmate throws at us — all nuisances but
never show-stoppers.

The main tradeoff, however, is that we must use a character-mode editor. That’s
not a worry for Mario and me, as we prefer vim and emacs anyway. We’ve
commandeered a good number of keyboard shortcuts that help us control tmate —
split windows, new windows, and window navigation are an instant away beneath
a keypress.

But, oh, the response time is fantastic! It’s almost like being there — remote pairing
seems real when using tmate. I no longer demonstrate reluctance toward typing when
connected to Mario’s machine. Things like ping-pong pairing become feasible.

PragPub April 2015 22

https://pragprog.com/book/olag/agile-in-a-flash
https://pragprog.com/book/olag/agile-in-a-flash
https://pragprog.com/book/bhtmux/tmux

• 10:25 a.m. Break.

• 10:35 a.m. Back to work. I press button #1 on my Jarvis desk controls;
the desktop lowers to 30.0" while I roll my chair under my rear and sit.
After re-Zooming Mario, we review Nate’s changes to his pull request
and merge it. We return to working on the filtering code.

• 10:50 a.m. We merge our code into master, run all tests, and push to
GitHub. While waiting for the build to complete, we talk with Nate,
who’s ready to push his change into production. Nate and his pair partner
join our Zoom. We grab the tag created by the CI build, and deploy to
our production staging Amazon machine instance. We verify his changes
with a quick set of manual tests, and then switch IPs to put our changes
into production.

• 11:15 a.m. Back to the filtering code. We work for another 40 minutes,
commit a few changes, and decide to break for lunch.

It’s a few minutes before noon, my time (U.S. Mountain). The ever-accommodating
Mario is located in the central time zone, an hour ahead, meaning he’s eating at 1
p.m. Most of us are pretty flexible; I might take lunch starting at anywhere from 11
a.m. to 1 p.m., depending on what’s going on (and yes, sometimes I’ll eat at my
desk).

• 1:00 p.m. The afternoon starts with a long cross-team pow-wow that
involves the team leads — about ten folks total. Most teams actually have
a couple of leads who represent their team at such group meetings. Our
meeting, like most, ends on time at 1:30 p.m. We’re rarely swamped with
meetings, and having representatives allows most developers to get their
work done without interruption.

We first used Zoom without paying for it, to ensure the videoconferencing
technology worked well for us (we abandoned Google Hangouts after realizing
it wasn’t meeting our needs). Free Zoom meetings are time-limited, however,
and cut off automatically after 40 minutes. We realized that the 40-minute
limit was a great feature — if only all live meetings had that hard stop!

Like any organization, we seek to find ways to get together aside from project work
to discuss things important to Outpace’s culture and also to socialize.

One team has initiated a “stand-down” time toward the end of the day to talk about
how things are going and perhaps pop a beer. I’ve put “4:20 time” on my calendar
to carve out time at the end of the day to experiment and learn. (Those not living in
Colorado or Washington might refer to this as “42 time.”) Like other teams, we
have retros, information-sharing sessions (“learn-you-a-things”), and Secret Santas.

• 1:30 p.m. Back to the work on the filtering story. We code, laugh a bit,
finish the programming work, and spend the rest of the afternoon (minus
a couple of short breaks) deploying the change to a QA environment
where we flesh out and run a few tests. Happy with the change, we let
our QA person and Paul know that they can take a look. We agree on a
plan to deploy the completed feature to production tomorrow afternoon
as long as everything is still looking good.

• 5:11 p.m. Mario and I wish each other a good evening. I start my
commute, this time half the distance, to my kitchen.

PragPub April 2015 23

• 5:11:05 p.m. Commute home finished.

We learn something new every day about what works well in this distributed world
and what doesn’t, and we try to adapt accordingly. Mario weighs in on some of the
challenges of distributed communication:

“One thing that seems like a downside is that it’s not as easy to overhear things as it
is when everyone is co-located. It’s not impossible, it’s just that everyone has to be
in the same group meeting. Just being able to overhear conversations is something
that is handy from time to time.”

“Slack lends itself to overhearing conversations. But there are more private
conversations as opposed to public ones. Plus, there’s overhead to having a lot of
channels — some that I monitor more closely to others. My ears will pick up
keywords. It’s not as often that I find myself noticing the same thing in Slack.”

Indeed, it’s easy to get wrapped up in email and meetings “IRL;” Outpace adds to
that the distraction of private chat conversations and several dozen Slack channels
(such as the #cuteness channel, replete with posted photos of amazingly cute animals).
But as in the physical world, people vote with their feet. I’ve learned to bow out of
most of the fluffy channels (but not #cuteness!) and I’ve added audible notifications
on the couple channels that really matter.

My first long-term, full-time experience with distributed development in 2010
(at GeoLearning) was less than ideal. We rarely used a camera and we were
often frustrated by the sluggishness of the GUI-shared-screen development.
Since the co-located folks represented the bulk of the teams, I always felt like
I was an adjunct resource, too often forgotten or left out of important
conversations —not a true member of the team.

My second experience has been rewarding in a number of ways:

• The flat organizational structure has allowed me to work directly with
our very sharp business folks, saving me from the headaches of the typical
corporate bureaucracy.

• The evolved technology set has made pairing and communication in a
distributed environment effective and a little closer to the ideal of “being
there.”

• The distributed nature of the company has provided me with the
opportunity to work with an impossible number of highly capable
developers and business folk, far more than usually available in any one
physical location.

• The pairing has given me the opportunity to learn from these top-notch
people, and to ramp up on technologies that most companies would
require as prerequisites for the job.

• The insistence on code quality has allowed me to be proud of the work
that I ship, and it has also helped us ship more often.

All of this in the comfort of my own home. (I do have to prod myself to leave
the house during the week; it’s fairly easy to become a permanent homebody.)
Spouse and kitchen are moments away.

Our original Rules for Distributed Teams still hold true. In 2011, immediately
after saying “don’t do it,” we wrote that distributed teams can work — just

PragPub April 2015 24

make sure you have a compelling reason and that you really commit to it. To
fully commit, you must find all ways possible to make up for the loss of
face-to-face communication with co-located teams, which is extremely
significant. That means spending the time and money as Outpace has done,
and continually seeking to improve.

Number One Rule for Distributed Teams, 2015
version
1. Don’t ...

unless you really mean it

About the Author
Jeff is a veteran software developer with a quarter century of experience. He’s written five books
on software development: Pragmatic Unit Testing in Java 8 with JUnit [U7] with Andy Hunt and
Dave Thomas, Modern C++ Programming with Test-Driven Development [U8], Agile In a Flash
[U9] with Tim Ottinger, Agile Java, and Essential Java Style. He also contributed two chapters to
Uncle Bob’s (Robert C. Martin’s) book Clean Code.

External resources referenced in this article:

[U1] http://agileinaflash.blogspot.com/2011/04/rules-for-distributed-teams.html

[U2] http://www.imdb.com/title/tt0137523/quotes

[U3] https://pragprog.com/book/olag/agile-in-a-flash

[U4] https://github.com/jakemcc/lein-test-refresh

[U5] https://pragprog.com/book/olag/agile-in-a-flash

[U6] https://pragprog.com/book/bhtmux/tmux

[U7] https://pragprog.com/book/utj2/pragmatic-unit-testing-in-java-8-with-junit

[U8] http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development

[U9] http://pragprog.com/book/olag/agile-in-a-flash

PragPub April 2015 25

https://pragprog.com/book/utj2/pragmatic-unit-testing-in-java-8-with-junit
http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development
http://pragprog.com/book/olag/agile-in-a-flash
http://agileinaflash.blogspot.com/2011/04/rules-for-distributed-teams.html
http://www.imdb.com/title/tt0137523/quotes
https://pragprog.com/book/olag/agile-in-a-flash
https://github.com/jakemcc/lein-test-refresh
https://pragprog.com/book/olag/agile-in-a-flash
https://pragprog.com/book/bhtmux/tmux
https://pragprog.com/book/utj2/pragmatic-unit-testing-in-java-8-with-junit
http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development
http://pragprog.com/book/olag/agile-in-a-flash

