
ThePragmatic
Bookshelf

PragPub
The First Iteration

Issue #31
January 2012

IN THIS ISSUE

* Tim Ottinger and Jeff Langr
take on unit tests

* An Interview with “The Dude”
David Hussman

* Venkat Subramaniam explores
Collections in Scala

* Dan Wohlbruck recalls
the scientific pocket calculator

PragPub • January 2012

Contents

FEATURES

Unit Tests Are FIRST .. 5
by Tim Ottinger, Jeff Langr

For unit tests to be useful and effective for your programming team you need to remember to make them FIRST.

The Dude Abides ... 13
by Michael Swaine

The Dude behind Cutting an Agile Groove chats about agility, coaching, and whatever else is on his mind.

Scala for the Intrigued ... 17
by Venkat Subramaniam

In this fifth installment of his series on the Scala programming language, Venkat mixes object oriented and functional
styles to reveal the power and grace of Scala collections.

When Did That Happen? ... 23
by Dan Wohlbruck

In January of 1972, Hewlett-Packard made a lot of engineers’ pockets happy.

— i —

DEPARTMENTS

Up Front ... 1
by Michael Swaine

Scala, the FIRST approach to unit tests, and a breakthrough product from forty years ago.

Choice Bits .. 2
Drinking from the Twitter firehose.

Meet the Team ... 4
Meet Brian Hogan, who writes books as well as acting as development editor for The Pragmatic Bookshelf.

The Quiz .. 25
A monthly diversion at least peripherally related to programming.

Calendar ... 26
Author sightings, upcoming conferences, and other events of note.

Shady Illuminations .. 29
by John Shade

John devotes this month’s column to telling you things you already know.

Except where otherwise indicated, entire contents copyright © 2012 The Pragmatic Programmers.

Feel free to distribute this magazine (in whole, and for free) to anyone you want. However, you may
not sell this magazine or its content, nor extract and use more than a paragraph of content in some
other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764. The editor is Michael Swaine
(michael@pragprog.com). Visit us at http://pragprog.com for the lowdown on our books, screencasts,
training, forums, and more.

ISSN: 1948-3562

— ii —

http://pragprog.com

Up Front
The Dude Abides

by Michael Swaine

Scala, the FIRST approach to unit tests, and a
breakthrough product from forty years ago.

In this first issue of 2012, we’d like to make some introductions.

Meet David Hussman, widely known as “The Dude,” who teaches and coaches
agility in companies of all sizes, working side by side with designers, developers,
tester, leaders, and others. David’s video series Cutting an Agile Groove [U1] is
a different sort of product from the Pragmatic Bookshelf, and we invited David
to chat about his experiences.

Also meet Brian Hogan, writer, editor, software developer. Brian has geen
gracious enough to submit to the latest of our Staff Profiles, designed to
eventually introduce you to everyone in the bullpen here in Pragville.

Recently, Tim Ottinger and Brett Schuchert devised a concise set of criteria
for making unit tests effective. In their latest agile feature, Tim and Jeff Langr
explain the mnemonic for these criteria, an overloaded acronym whose very
name answers the important question of when to write tests.

Venkat Subramaniam is back with another installment of his series on the
Scala language. Dan Wohlbruck highlights another moment in the history of
technology. And John Shade tells you things you already know.

But wait, there’s more. We haven’t published a puzzle in a while, so this month
we’re offering up a Sudoku puzzle with a twist—it uses letters instead of digits,
and hidden within it is a name that any computer scientist should be familiar
with.

We hope you enjoy the issue, and that your 2012 is a good one.

PragPub January 2012 1

http://pragprog.com/screencasts/v-dhcag/cutting-an-agile-groove

Unit Tests Are FIRST
Fast, Isolated, Repeatable,
Self-Verifying, and Timely

by Tim Ottinger, Jeff Langr

For unit tests to be useful and effective for your
programming team you need to remember to make
them FIRST.

A unit test is a small automated test, coded by a programmer, that verifies
whether or not a small piece of production code—a unit—works as expected
in isolation. The moniker unit test was popularized with the advent of tools
such as SUnit (for Smalltalk) and JUnit. The XP crowd used the term to mean
tests that were produced as a result of programmers practicing test-driven
development (TDD). Some developers balked—the phrase already had a
considerably different meaning in some circles.

Mike Hill of Industrial Logic proposed the unique term microtest, along with
which he provided a detailed definition [U1] to avoid any confusion. Michael
Feathers proposed a similar definition that listed five things a unit test is not
[U2]. Both sets of criteria are great guidelines for building unit tests. But is there
a more concise way to capture and remember them?

Tim Ottinger and Brett Schuchert, Object Mentors at the time, devised the
FIRST mnemonic for a more concise set of criteria for effective unit tests. The
acronym is overloaded: its very name answers the important question of when
we write tests: FIRST.

F for Fast

The faster your tests run, the more often you’ll run them. Tests take half a
minute to run? You’ll maybe run them every 5 minutes instead of every few

PragPub January 2012 5

http://anarchycreek.com/2009/05/20/theyre-called-microtests/
http://www.artima.com/weblogs/viewpost.jsp?thread=126923

seconds. Tests take over two minutes to run? You might run those tests once
every half hour, and you can write a lot of questionable code in that time!
Tests take ten, fifteen, or more minutes to run? Forget it. You’ll run those a
few times per day at best.

Developers cope with long-running test suites by running a subset of the tests.
That’s a guessing game that can work reasonably well as long as you run all of
the tests before check-in. It is faster in the short term, but far less certain. All
it takes is one extensive debugging session to wipe out the time savings. Unit
tests save you time by finding errors immediately after you make them.

You can better tolerate slow tests if a Continual Testing (CT) tool runs them
whenever code changes. Smart CT tools like Infinitest [U3] will calculate which
tests to run based on dependencies in the code. Either way, CT makes running
tests less painful. But it is better still if your microtests are blazing fast.

The primary goal of the following test is to verify that HasArticles answers true
when articles are present in a feed. It takes almost half a second on a beefy
Mac with a fast internet connection. How many reasons can you spot?

class testme(unittest.TestCase):
def test_recognizesEntries(self):

url = "http://agileinaflash.com/feeds/posts/default"

content = urllib2.urlopen(url).read() # 1

self.assertGreater(len(content),0) # 2

open("localfeed.rss", "w").write(content) # 3

sut = ArticleRssParser('localfeed.rss') # 4

self.assertTrue(sut.HasArticles())

Examine the statements at the comment markers.

1. The test goes to the web for data.

2. The test fails if the RSS feed is empty, without testing HasArticles at all.

3. Writing to the file system increases run time. (The untidy test doesn’t
delete this file; correcting this defect adds another file system round-trip
to the test time.)

4. The RSS parser class reads from a file.

Instead of accessing a web page, you could write a sample RSS document with
a couple “faked” entries to a file. A fast file system might bring the cost of that
write to perhaps a tenth of a second. But do you need the file handling at all?
If you extract the ArticleRssParser’s file handling into a separate class method,
you can easily bypass the file system:

class ArticleRssParser(object):
@classmethod
def get_feed_content(cls, filename):

return open(filename).read()
… the rest of the class elided

(We use a class method because we want to stub out a behavior that exists in
the constructor, otherwise we’d extract to a normal instance method.)

To string this all together, we’ll use the mocking library pymox to create a
record/playback test:

PragPub January 2012 6

http://infinitest.github.com/

class basic_feed_parsing(unittest.TestCase):
def test_reports_it_has_articles_from_2_article_feed(self):

mocks = mox.Mox()
mocks.StubOutWithMock(ArticleRssParser, 'get_feed_content')
ArticleRssParser\

.get_feed_content('fakefilename')\

.AndReturn(sample_with_2_entries)
mocks.ReplayAll()
parser = ArticleRssParser("fakefilename")
self.assertTrue(parser.HasArticles())
mocks.VerifyAll()

Running this test requires neither web access nor file access.

The test’s new line count is higher, and its setup more complicated. As you
write additional tests, you’ll be able to abstract away more details. Here’s a
later, refactored version:

def test_reports_it_has_articles_from_2_article_feed(self):
self.mocks.StubOutWithMock(ArticleRssParser, 'get_feed_content')
ArticleRssParser\

.get_feed_content('fakefilename')\

.AndReturn(sample_rss_with_2_entries)
with replay(self.mocks):

parser = ArticleRssParser("fakefilename")
self.assertTrue(parser.HasArticles())

This test usually runs in under 0.02 seconds on Tim’s machine. Much faster,
but still unacceptable if your suite contains thousands of similarly slow tests.

It turns out that this class uses the python feedparser library, which is already
well-tested and reliable. Since you don’t need to re-test feedparser, you can
speed up the test by stubbing it out.

def test_reports_it_has_articles_from_2_article_feed(self):
result_with_2_entries = {"entries":[1,2]}
self.mocks.StubOutWithMock(ArticleRssParser, 'parse_input')
ArticleRssParser\

.parse_input('fakefilename')\

.AndReturn(result_with_2_entries)
with replay(self.mocks):

parser = ArticleRssParser("fakefilename")
self.assertTrue(parser.HasArticles())

Result? Runtime disappears into the noise. A unit test in python takes 0.012
to 0.015s if it does nothing but assertTrue(True). This version of the test takes
no measurable time at all. The test has assumptions about feedparser, but it
still shows that you’re handling the results correctly.

Now we can afford to add a large number of similar tests without long
automated test cycles sucking the joy out of our day.

I for Isolated

Each unit test should have a single reason to fail. Our prior example fails this
criterion: the test would fail if the file system was full or read-only, if the file

PragPub January 2012 7

existed and was not writeable, if the network was down, if there were no articles
in the RSS feed, or if it did not recognize entries in the feed.

You must design your tests to be independent not only of external factors, but
of each other as well. When tests are interdependent, a change to one test can
cause several others to fail in puzzling ways. Ordering unit tests to optimize
their execution is a sign that isolation is poor. Each unit test should instead
stand on its own as a complete case that documents one discrete behavior.

Dave Astel’s recommendation of one assert per test [U4] promotes tests that are
I for isolated. Here’s a test that verifies aspects of both checking out and
checking in books:

@Test
public void testAvailability() {

theTrialHolding.checkOut(TODAY);
assertFalse(theTrialHolding.isAvailable());
theTrialHolding.checkIn(TOMORROW, BranchTestData.ROCKRIMMON_BRANCH);
assertTrue(theTrialHolding.isAvailable());

}

Many unit testers would leave this test alone, but it’s really testing aspects of
two behaviors. Splitting it into two single-assertion tests makes the reason for
any failure immediate. A split also allows you to improve the test names:

@Test
public void isNoLongerAvailableAfterCheckout() {

theTrialHolding.checkOut(TODAY);
assertFalse(theTrialHolding.isAvailable());

}
@Test
public void isAvailableAfterCheckin() {

theTrialHolding.checkOut(TODAY);
theTrialHolding.checkIn(TOMORROW, BranchTestData.ROCKRIMMON_BRANCH);
assertTrue(theTrialHolding.isAvailable());

}

Such single-purpose tests make AAA (Arrange-Act-Assert) notation effective.

The sheer size of most systems means that no one knows the entire code base
by heart. You must design your test suite names, your test names, and your
assert messages to reduce and simplify investigation.

R for Repeatable

You should obtain the same results every time you run a test. Tests can fail
intermittently for a few reasons; here are the most common:

1. Static data or other in-memory constructs not cleaned up

2. Volatility of external services (e.g. file system, database, web services,
API calls)

3. Non-deterministic behavior due to incorrect use of threads/processes

4. Dependence on an uninitialized (or slow-initializing) local class

PragPub January 2012 8

http://www.artima.com/weblogs/viewpost.jsp?thread=35578

5. Over-specification (for example, comparing entire screen images or
HTML when only a small part of the result is interesting)

Intermittently-failing tests can be difficult to decipher. If you are uncertain
about the current state of things, add precondition assertions. If any
precondition is not met, the test will stop before it has a chance to run, and
you’ll know exactly why:

@Test
public void addCustomer() {

assertThat(customerStore.retrieve(ACME_ID), is(null));
customerStore.add(new Customer(ACME_ID));
// ...

}

Testing threads is a more difficult challenge. You might figure out how to test
multi-threaded code, observe the test passing dozens of times in a row, and
then watch it curiously fail. Some developers will say—perhaps
unhelpfully—that testing with multiple threads is more of an integration test
than a unit test. A discussion on threaded testing [U5] at Stack Overflow is a
good place to start, and will give you an idea of the kinds of challenges you’re
up against.

Increasing isolation tends to enhance repeatability.

S for Self-Verifying

A good unit test fails or passes unambiguously. When all tests run green, you
have high confidence that you can ship the code to the next level (likely the
acceptance test automated suite). If any of the tests fail, you don’t proceed
until they get fixed. The pass/fail nature of the automated testing system makes
it viable even for large teams.

When a test suite leaves some results open to human interpretation, validating
them becomes a drag on the productivity of all programmers. Ambiguous tests
fail to be helpful and fall into disuse.

A classic way to game the code coverage metric is to write a test that exercises
a broad swath of code, yet never assert a thing.

@Test
public void createReport() {

Catalog catalog = new Catalog();
catalog.add(new Holding(BookTestData.AGILE_JAVA));
catalog.add(new Holding(BookTestData.JAWS));
catalog.add(new Holding(BookTestData.THE_TRIAL));
InventoryReport report = new InventoryReport(catalog);
System.out.println(report.allBooks());

}

If the system misbehaves, there is a rather dubious hope that a programmer
will be monitoring the console output and will know what output to expect.

Coded tests should instead actually verify something in an automated fashion:

PragPub January 2012 9

http://stackoverflow.com/questions/12159/how-should-i-unit-test-threaded-code

@Test
public void createReport() {

Catalog catalog = new Catalog();
// ...
InventoryReport report = new InventoryReport(catalog);
assertThat(report.contains(BookTestData.AGILE_JAVA.getClassification());
// ...

}

Do programmers really write unit tests that test nothing? Sadly, yes. A recent
SD Times article related this story: “One organization outsourced its test case
implementation with the goal of achieving 80% test coverage. The test
coverage went up, but because the tests were calling methods but not validating
them, the outcome was useless.” (Morgan, Lisa. “Driving Higher Value from
Build Management and Continuous Integration,” SD Times, October 2011.)
We’ve both personally witnessed this kind of dysfunction.

Usually a “wide swath” test can be reworked into a series of fast, isolated,
repeatable, self-validating tests. In pathological cases, the complicated setup
and poor environmental control may make salvage untenable.

When pairing with developers new to TDD, we’ll sometimes gut a method
completely, reducing it to merely returning a null value. Our pair partner is
either enlightened by reading the failing tests, or else amused as all the
automated tests pass. Try this technique for yourself, and see what happens!

Tests that prove nothing have no benefit to your team. Removing them will
make your coverage metrics honest and useful.

T for Timely

Should you write tests before writing the production code or after it’s already
built?

You should always know what you’re trying to build before you build it. Tests
written first specify the behavior that you’re about to build into the code.
These “specifications by example” can help everyone more rapidly understand
what the code’s doing, particularly down the road when no one remembers
what it was supposed to do.

You also want to know when you’re done—that is, when you’ve successfully
coded things correctly to that specification. Running tests constantly lets you
know when you can integrate your changes into the source repository.

Writing tests before the code encourages you to think of the use of the code
before you think of its implementation. The tests are the very first client of
the code you’re building. A clean unit test should make it very clear what the
client code will look like. Hopefully you’ll do things like improve your function
names and design simpler parameter lists as a result.

Can’t you achieve all of these qualities if you write tests after the code,
something we refer to as Test-After Development (TAD)? Theoretically,

PragPub January 2012 10

there’s no reason you can’t get the same benefits. But in our experience, it
simply doesn’t happen.

TAD programmers want to verify their code, too, but they typically have little
interest in treating the tests as “specifications by example.” For them, the
usually singular goal of unit testing is to verify whether or not some aspects of
the code work. These unit tests typically cover up to two-thirds of the code
base (see bullseye [U6], binstock [U7], and stack overflow [U8]). Other forms of
integration tests can increase effective coverage, but unit tests are the closest
reliable documentation for the code you’re modifying.

The choice to cover only a fraction of the code base with unit tests is a
judgment call, hopefully one that weighs effort against risk. Our take: we know
that defects, sometimes devastating ones, creep up in the strangest places.
We’d prefer to spend time creating confidence that all the logic in the system
is solid instead of spending it in long debugging sessions.

The real sticking point with TAD is productivity. When you don’t think about
how to craft code so it’s testable, you’ll often end up with code that is
near-impossible to test. The test-writer has to either rework it or use a lot of
finesse to avoid rework. This makes testing feel like a waste of time. No wonder
so few programmers have fully embraced unit-testing! We find TAD to be
simply less fun, less beneficial, less productive, and more frustrating than TDD.

Studies have shown that TDD incurs an additional, initial development cost
of anywhere from 15% to 35% more time. Our experiences doing and coaching
TDD back that up, but we’ll be more daring and say that things speed up over
time. Our experience with TAD is that it takes more than 35% of development
time for far less benefits, and that figure tends to get worse over time.

Coming back to write a unit test for the ReportMailer class, you find that the
constructor throws an exception when called. A static call to
MailDestination.getEndpoint, apparently made to verify that each MailDestination
object passed has a valid endpoint, is the problem.

public ReportMailer(MailDestination[] destinations) {
this.destinations = destinations;
if (destinations.length == 0)

throw new RuntimeException("dests required");
for (int i = 0; i < destinations.length; i++)

if (MailDestination.getEndpoint(destinations[i]) == null)
throw new RuntimeException("invalid endpoint");

}

A bit of digging reveals that getEndpoint requires a live external API call. You
consider making the method instance-side, so that the client calls it like this:

if (destinations[i].getEndpoint() == null)

but then you discover that other clients use it statically, and you don’t want
to have to touch other code. You could introduce the Feathers’ WELC pattern
Extract and Override Call to fix this problem. This testability challenge would
have been addressed already had we been test-driving from the start.

Granted, fixing this isolated example doesn’t represent a huge amount of
additional effort. Compound it with gobs of other similar code with bad

PragPub January 2012 11

http://www.bullseye.com/minimum.html
http://binstock.blogspot.com/2007/03/how-many-unit-tests-are-enough.html
http://programmers.stackexchange.com/questions/1380/how-much-code-coverage-is-enough

dependency upon bad dependency and long convoluted methods, and it’s
enough to make most developers toss up their hands in disgust.

Effective Unit Tests
Whatever you call them and however you define them, the most important
thing about unit tests is that they be useful and effective for your programming
team. The FIRST mnemonic is a simple mechanism to guide you there.

About Tim
Tim Ottinger is the originator and co-author of Agile in a Flash [U9], a contributor to Clean Code,
and a 30-year (plus) software developer. Tim is a senior consultant with Industrial Logic where
he helps transform teams and organizations through education, process consulting, and
technical practices coaching. He is an incessant blogger and incorrigible punster. He still writes
code, and he likes it.

About Jeff
Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash [U10] with Tim, he’s written over 100 articles on software development and a
couple books, Agile Java and Essential Java Style, and contributed to Uncle Bob’s Clean Code.
Jeff runs the consulting and training company Langr Software Solutions from Colorado Springs.

Send the authors your feedback [U11] or discuss the article in the magazine forum [U12].

External resources referenced in this article:

[U1] http://anarchycreek.com/2009/05/20/theyre-called-microtests/

[U2] http://www.artima.com/weblogs/viewpost.jsp?thread=126923

[U3] http://infinitest.github.com/

[U4] http://www.artima.com/weblogs/viewpost.jsp?thread=35578

[U5] http://stackoverflow.com/questions/12159/how-should-i-unit-test-threaded-code

[U6] http://www.bullseye.com/minimum.html

[U7] http://binstock.blogspot.com/2007/03/how-many-unit-tests-are-enough.html

[U8] http://programmers.stackexchange.com/questions/1380/how-much-code-coverage-is-enough

[U9] http://www.pragprog.com/refer/pragpub31/titles/olag/Agile-in-a-flash

[U10] http://www.pragprog.com/refer/pragpub31/titles/olag/Agile-in-a-flash

[U11] mailto:michael@pragprog.com?subject=agile

[U12] http://forums.pragprog.com/forums/134

PragPub January 2012 12

http://www.pragprog.com/refer/pragpub31/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub31/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile
http://forums.pragprog.com/forums/134
http://anarchycreek.com/2009/05/20/theyre-called-microtests/
http://www.artima.com/weblogs/viewpost.jsp?thread=126923
http://infinitest.github.com/
http://www.artima.com/weblogs/viewpost.jsp?thread=35578
http://stackoverflow.com/questions/12159/how-should-i-unit-test-threaded-code
http://www.bullseye.com/minimum.html
http://binstock.blogspot.com/2007/03/how-many-unit-tests-are-enough.html
http://programmers.stackexchange.com/questions/1380/how-much-code-coverage-is-enough
http://www.pragprog.com/refer/pragpub31/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub31/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile
http://forums.pragprog.com/forums/134

