
ThePragmatic
Bookshelf

PragPub
The First Iteration

Issue #28
October 2011

IN THIS ISSUE

* Adam Goucher reveals the heuristics
of automated testing

* Jeff Cohen says community
development needs a handbook

* Venkat Subramaniam talks about
Scala’s Sensible Typing

* Tim Ottinger and Jeff Langr
take on distributed development

* Dan Wohlbruck explores
the invention of the adding machine

PragPub • October 2011

Contents

FEATURES

Lightsabers, Time Machines, & Other Automation Heuristics 6
by Adam Goucher

Automation, like all of testing, is an inherently heuristic activity. Adam reveals some of the most powerful heuristics of
automated testing.

Open Source Community Values .. 16
by Jeff Cohen

When you get a new job, you often receive a handbook. Don’t open source communities also need a handbook of
community values?

Scala for the Intrigued ... 20
by Venkat Subramaniam

In this second installment of this series on the Scala programming language, Venkat shows how Scala’s static typing leads
to low ceremony programming.

But We Have These Distributed Folks ... 25
by Tim Ottinger, Jeff Langr

Is “distributed agile” an oxymoron? Tim and Jeff explain how to deal with the costs of going distributed.

When Did That Happen? ... 31
by Dan Wohlbruck

On another journey into the history of technology, Dan shows that a lot can be done with string, rubber bands, and a
macaroni box.

— i —

DEPARTMENTS

Up Front ... 1
by Michael Swaine

What’s PragProWriMo? Do open source communities need a handbook? And other burning questions.

Choice Bits .. 2
For every question in twitterspace, somebody has tweeted an answer. Just not necessarily to that question.

Meet the Team ... 5
Meet Susannah Pfalzer, Pragmatic Bookshelf’s Managing Editor.

Shady Illuminations .. 33
by John Shade

John shares his values, and they turn out to include pessimism, procrastination, and paranoia.

Calendar ... 35
Author sightings, upcoming conferences, and other events of note.

But Wait, There’s More... ... 41
Coming attractions and where to go from here.

Except where otherwise indicated, entire contents copyright © 2011 The Pragmatic Programmers.

Feel free to distribute this magazine (in whole, and for free) to anyone you want. However, you may
not sell this magazine or its content, nor extract and use more than a paragraph of content in some
other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764. The editor is Michael Swaine
(michael@pragprog.com). Visit us at http://pragprog.com for the lowdown on our books, screencasts,
training, forums, and more.

ISSN: 1948-3562

— ii —

http://pragprog.com

Up Front
It’s PragProWriMo Time!

by Michael Swaine

We’re counting down to our annual orgy of
authorship, when we invite you to write that book.

Lots of good stuff this month. Adam Goucher on automation, Jeff Cohen on
developer community values, Tim Ottinger and Jeff Langr on distributed
computing, and Dan Wohlbruck on tech history. Venkat Subramaniam
continues his series on the Scala language. John Shade has a little list. And
in the latest installment of our series of staff profiles, you get to meet another
member of our team.

You’ll find something of interest in this issue, I’m sure. But now let me tell
you about a little program we’ve got going on next month.

We call it PragProWriMo, short for Pragmatic Programmers Writing Month,
and this November will be our third PragProWriMo. We were inspired by (we
ripped off) NaNoWriMo [U1], National Novel Writing Month.

PragProWriMo is all about helping you write that technical book you’d really
like to write but for some reason haven’t been able to get started.

We’ll provide supporting materials and encouragement and all you have to do
is to write 60 pages toward that book during the month of November.

To help you along, we’re setting up a forum and a Twitter account. Follow us
on Twitter at @pragprowrimo [U2] to stay up to date. Join the forum at
forums.pragprog.com/forums/190 [U3] for more detailed writing advice, answers
to your writing questions, and progress reports from participants. And when
you finish your 60 pages, you might even get some special recognition from
us.

And of course we’d love for you to submit a proposal for that book to us. But
it’s your work. You can publish it for free, you can do print on demand, you
can hide it from the world and keep it to yourself, or you can take it to another
publisher. What we’re really trying to do is to help you write the book you’ve
always wanted to write.

External resources referenced in this article:

[U1] http://www.nanowrimo.org/

[U2] http://twitter.com/#!/pragprowrimo

[U3] http://forums.pragprog.com/forums/235

PragPub October 2011 1

http://www.nanowrimo.org/
http://twitter.com/#!/pragprowrimo
http://forums.pragprog.com/forums/235
http://www.nanowrimo.org/
http://twitter.com/#!/pragprowrimo
http://forums.pragprog.com/forums/235

But We Have These Distributed Folks
Can Distributed Teams Be Effective

by Tim Ottinger, Jeff Langr

Have you worked on a distributed team where
management apparently thought it should hobble
local members to make everybody equally frustrated
and ineffective?

Last month [U1], we discussed appropriate reasons for acquiring an agile project
management tool. One common reason is to help consolidate project
information for environments with distributed team members. Our controversial
take is that you’d have one less reason to invest in an agile PM tool if you had
no distributed team members.

Quoting the Agile Manifesto [U2] again this month, we reiterate that its very
first value is of individuals and interactions over tools and processes, with
supporting principles [U3] that tell us what the agile signatories really meant:

1. Business people and developers must work together daily throughout
the project.

2. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

There have been attempts, possibly misguided, to create a “distributed agile”
manifesto. The problem is, the proposed new principles or values contradict
this value and the corresponding principles. A revision that violates the intent
of the original is a poor extension, indeed.

Developing in distributed teams is an issue close to our hearts. Both of us have
worked as remote developers, including being full-time remote
pair-programmers. We have worked with scores of teams that included
distributed members. We have seen distributed development work, and have
seen how it can fail, and we are devoting this month’s article to an eyes-open
look at agile tooling and distributed teams.

Distributed Teams Are a Choice
The choice to create a team that is not co-located will challenge the team’s
ability to follow the above values and principles. This departure from agile in
turn detracts from the team’s ability to be successful—unless they can find a
way to return the emphasis to individuals communicating face-to-face on a
daily basis.

Distributed teams are a choice, not a circumstance forced upon a company by
chance. A company may find that they can attract professionals of a higher
calibre if they don’t insist that those professionals pull up roots and move.
Likewise, a company may have chosen an implementation technology that
does not have a rich user base in their local area. These are decisions that
value people and interactions.

In other cases, executives buy into the promise of reducing costs by employing
lower-priced and perhaps lower-capability programmers through off-shoring.
CIO’s article “The Hidden Costs of Offshoring [U4],” by Stephanie Overby

PragPub October 2011 25

http://pragprog.com/magazines/2011-09/the-only-agile-tools-youll-ever-need
http://agilemanifesto.org/
http://agileinaflash.blogspot.com/2009/08/12-principles-for-agile-software.html
http://www.cio.com/article/29654/The_Hidden_Costs_of_Offshore_Outsourcing

makes it clear that off-shoring must be viewed as “a long-term investment with
long-term payback.” It’s not as simple a matter as finding talent elsewhere—it
takes a long time and continual effort to succeed with distributed teams.
Executives must be willing to invest in additional travel and technology. They
must also demonstrate patience in the early stages, and create a culture that
accommodates many hiccups.

Whether the draw is greater talent or lower cost, distributed development
incurs some intangible costs. One significant difference with distributed
development is that remote folks are usually considered peripheral to the team.
Since they’re not physically present, they miss out on important ad-hoc
conversations. Teams may view them as an annoyance:

Jeff: “Nuts! We forgot to start the phone bridge to include Curt.”

Tim: “Oh! ... Oh well.”

Jeff: “Oh well.”

There is no question that the potential impact of Curt is diminished because
he’s remote. Curt knows this too, and often feels distanced from the team as
much emotionally and mentally as physically.

We worked with a team that had a business analyst in Sydney, a project
manager in Dallas, two developers and a tester in Dallas, two more developers
and two testers in Krakow, and another developer in Bangalore. The time zone
issues alone meant that it was impossible to hold a meeting with all team
members without encroaching on the sleep habits of at least one participant.
When there was a question, it could take 12 to 24 hours to get an answer.

If you are in a sizable organization with distributed teams, the question to ask
is, “What can we do to minimize the isolation of team members and maximize
face-to-face conversation?”

The best answer? Don’t do that. In larger organizations, it’s usually possible to
create entire project teams in many of your offshore locations, particularly if
you’re willing to send out your expertise to help remotely grow the capabilities
and culture you need to succeed. We hear “we can’t do that” far more often
than we actually believe it.

Employing remote developers in order to save on costs is not a necessary
condition of development, but instead a choice. This choice not only
diminishes from an optimal communication environment, but also emphasizes
negotiation and contracts instead of incremental and iterative exploration.

Employing remote developers in order to retain a stellar performer is also a
choice. Our take: We’d rather have an enthusiastic, co-located team with an
average performer in place of the headaches associated with dealing with a
remote “rock star.”

We produced a fairly popular card [U5] to help organizations cope with having
distributed teams, presented here for your consideration.

PragPub October 2011 26

http://agileinaflash.blogspot.com/2011/04/rules-for-distributed-teams.html

The discussion that accompanies the original card stands alone, and is worth
a quick read, but since we’ve gotten to this discussion through a discussion of
tool purchases, let’s see how these principles guide us in the selection and
deployment of agile project management tools.

Don’t
Try pushing distributed management tool purchases off to the last responsible
moment. First consider all other tools: development tools, distributed version
control, continuous integration tools, remote desktop sharing, voice-and-video
tools, shared whiteboards, telepresence devices, conference systems, testing
hardware, and so on. If the need for an agile management tool outweighs all
of these, then buying an agile management tool is reasonable. Be sure that the
need is immediate and significant, the use of the tool is a good long-term
decision, and that it does not further burden the remotes.

As the zen of Python [U6] says, “never is often better than right now.”

Don’t Treat Remotes As If They Were Local
Beware how you firewall in your teams. If the remotes can’t access email,
intranet resources, file shares, version control, messaging, and the like then
you won’t have much fun trying to collaborate with them. Locking out tools
like Skype may be a bad idea.

If you choose any collaboration or documenation tools that present themselves
as file systems or shares, will the remotes have ready access to them?

Remember that VPN is “the next best thing to being there” but also that it
isn’t the most efficient way to communicate—it’s a distant second place. Often
even simple screen sharing apps will have a half-second or more of lag, so that
typing a word or editing a line of code can be tedious.

Don’t Treat Locals As If They Were Remote
Well-meaning companies use various communication and coordination tools
to help the remotes, and then make the locals use those tools as well. Local
developers don’t need such tools because they can more easily and fluidly
communicate face-to-face. The goal of tools (management, bug tracking, or

PragPub October 2011 27

http://www.python.org/dev/peps/pep-0020/

whatever) is not to give all members of the team common hardships, but to
empower them to do work well.

Remote developers know that their team experience is degraded, and expect
some sacrifice to be a part of the bargain. They learn to communicate with
the local developers better, to keep back channels of communication open,
and to deal with lag and network droppage. Constraining locals to the
hindrances of being remote only serves to diminish productivity.

Latitude Hurts, But Longitude Kills
Most agile management tools are not affected by time zones, but a
communication among widely-distributed team members may routinely be an
overnight thing. Expect that your emails will be answered tomorrow, and that
any status updates to the management system will not be immediate like it
will with local people. Expect this delay to be a part of the daily routine.

For God’s sake, don’t check in code that breaks the build right before going
home. Knowing the time zone difference, be sure that you leave your work day
with a clean build that is ready for the remote team to use. Failure to observe
this warning has caused teams to develop disdainful views of each other. Be
wise, be warned.

Don’t Always Be Remote
A team whose members understand each other and can work together well is
a successful team.

If you are just starting an agile effort, start with everyone in one place. If you
have remote team members, fly them in, and insist everyone situate in a single
room to feel each other out. Not literally of course—that’s the stuff of
lawsuits—but ensure that they come to understand each others’ motivations,
cultures, and quirks. Only then should you fling them back to remote corners
of the earth.

To kick the team off initially, a week is not enough; you’ll want them in close
quarters for at least a few weeks—ideally a month to six weeks. If you have
the budget, then invite spouses as well, since locals don’t have to leave their
families to go to work and it may be helpful for families to experience the local
culture.

Sound costly? It is, but it’s less costly than a non-team unable to deliver quality
software because they can’t communicate and don’t understand one another.

You’ll want your distributed team to occasionally reacquaint themselves with
each other, perhaps for a week or two at a time. Twice a year is a reasonable
goal.

Tools That Work
Our tools must lead us toward agile values and principles, not away from them.
If a tool detracts from our ability to communicate face-to-face with our
teammates on a daily basis, it is not a good agile tool. Conversely, we seek
tools that help us make up for any loss in daily face-to-face communication
that we might suffer due to being distributed.

PragPub October 2011 28

“Face-to-face” means just that: When we can converse with a visible individual,
observe their facial expressions, hear the tone in their voice, and read their
body language, we have the best opportunity for understanding them. Email
strips all of these important facets of communication. Text messaging returns
only the ability to converse. Voice chat allows us to hear tone of voice, but
hides body language and facial expressions that inform our reactions and
interpretation. Was the remote person being sarcastic or enthusiastic? Was it
a joke? Was the last remark condescending or just ill-phrased?

Audio/video chat begins to return us to the realm of face-to-face. The camera
lens is limited in scope, however, and can still prevent us from seeing body
language. It’s also usually fixed in focus, preventing us from following a
teammate into the hallway, or from seeing that someone else just entered the
room.

Here are some specific guidelines for communicating within a distributed team:

1. Everyone has a pretty good camera and microphone or headset available
on their computer.

2. Everyone is available on a single, standardized team chat channel. At
GeoLearning, some developers used Jabber, some used Skype, many
didn’t log into their chat clients until reminded, and some weren’t on
chat at all. It was very frustrating when you needed a question answered
but couldn’t find anyone to ask.

3. Everyone is automatically logged into chat.

4. The team area hosts at least two always-on cameras, positioned to cover
as much of the workspace as possible.

5. The team area hosts a high-quality conferencing microphone that is also
always on.

6. The team either focuses another always-on camera at the card wall, or
uses online distributed card wall software.

7. The team uses a scribe to capture and record important conversations
when not everyone can be present (perhaps due to time zone issues).
Conversation records must be broadcast to all team members.

8. The team creates and follows a process that makes it clear when and
how each distributed conversation gets closed out. Otherwise, distributed
conversations can easily drag on without resolution.

Conclusion
There is no reason that a company with distributed membership cannot be
agile (Industrial Logic is largely a distributed organization) but it is considerably
more work. Distance makes communication both less natural and more
important. Misunderstanding is more likely. It is harder for local teams and
local team members to appreciate the contributions of remote teams.

You can of course succeed with distributed team members (and we have!), but
we ask that you recognize that the loss of free-form conversation compromises
the agile ideal. We don’t care whether this means you can no longer call
yourselves “agile”—that’s not what’s important. What’s important is that you

PragPub October 2011 29

understand the values you are controverting, so that you can seek remedies
and help improve your chances of success.

About Tim
Tim Ottinger is the originator and co-author of Agile in a Flash [U7], a contributor to Clean Code,
and a 30-year (plus) software developer. Tim is a senior consultant with Industrial Logic where
he helps transform teams and organizations through education, process consulting, and
technical practices coaching. He is an incessant blogger and incorrigible punster. He still writes
code, and he likes it.

About Jeff
Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash [U8] with Tim, he’s written over 100 articles on software development and a couple
books, Agile Java and Essential Java Style, and contributed to Uncle Bob’s Clean Code. Jeff runs
the consulting and training company Langr Software Solutions from Colorado Springs.

Send the authors your feedback [U9] or discuss the article in the magazine forum [U10].

External resources referenced in this article:

[U1] http://pragprog.com/magazines/2011-09/the-only-agile-tools-youll-ever-need

[U2] http://agilemanifesto.org/

[U3] http://agileinaflash.blogspot.com/2009/08/12-principles-for-agile-software.html

[U4] http://www.cio.com/article/29654/The_Hidden_Costs_of_Offshore_Outsourcing

[U5] http://agileinaflash.blogspot.com/2011/04/rules-for-distributed-teams.html

[U6] http://www.python.org/dev/peps/pep-0020/

[U7] http://www.pragprog.com/refer/pragpub28/titles/olag/Agile-in-a-flash

[U8] http://www.pragprog.com/refer/pragpub28/titles/olag/Agile-in-a-flash

[U9] mailto:michael@pragprog.com?subject=agile

[U10] http://forums.pragprog.com/forums/134

PragPub October 2011 30

http://www.pragprog.com/refer/pragpub28/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub28/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile
http://forums.pragprog.com/forums/134
http://pragprog.com/magazines/2011-09/the-only-agile-tools-youll-ever-need
http://agilemanifesto.org/
http://agileinaflash.blogspot.com/2009/08/12-principles-for-agile-software.html
http://www.cio.com/article/29654/The_Hidden_Costs_of_Offshore_Outsourcing
http://agileinaflash.blogspot.com/2011/04/rules-for-distributed-teams.html
http://www.python.org/dev/peps/pep-0020/
http://www.pragprog.com/refer/pragpub28/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub28/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile
http://forums.pragprog.com/forums/134

