
ThePragmatic
Bookshelf

PragPub
The First Iteration

Issue #27
September 2011

The Elegance of ScalaThe Elegance of Scala

IN THIS ISSUE

* Venkat Subramaniam on
The Elegance of Scala

* ...and Brian Tarbox on
a particular virtue of Scala

* Tim Ottinger and Jeff Langr on
The Only Agile Tools You Need

* Dan Wohlbruck on
the First ATM Machine

PragPub • September 2011

Contents

FEATURES

Scala for the Intrigued ... 6
by Venkat Subramaniam

With this issue we launch a new series on the Scala programming language by Venkat Subramaniam.

Scala Traits .. 10
by Brian Tarbox

Brian shares one reason to consider Scala even if you are not interested in functional programming.

The Only Agile Tools You’ll Ever Need ... 14
by Jeff Langr, Tim Ottinger

The very first value of agile emphasizes “individuals and interactions over processes and tools.” But that doesn’t mean
“don’t use tools.”

When Did That Happen? ... 20
by Dan Wohlbruck

Dan takes us back in time again, to the birth of the ATM. That was in this month in 1969.

— i —

DEPARTMENTS

Up Front ... 1
by Michael Swaine

This month kicks off a new series on the Scala language and a series of Pragmatic Bookshelf staff profiles.

Choice Bits .. 2
Horror author HP Lovecraft was not cancelled in August, but you can be forgiven for thinking he was.

Meet the Team ... 5
Meet Miles Forrest, Pragmatic Bookshelf’s Screencast Development Editor.

Shady Illuminations .. 22
by John Shade

Why Steve Jobs will be missed and Tim Cook will be fine.

Calendar ... 25
Author sightings, upcoming conferences, and other events of note.

But Wait, There’s More... ... 32
Coming attractions and where to go from here.

Except where otherwise indicated, entire contents copyright © 2011 The Pragmatic Programmers.

Feel free to distribute this magazine (in whole, and for free) to anyone you want. However, you may
not sell this magazine or its content, nor extract and use more than a paragraph of content in some
other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764. The editor is Michael Swaine
(michael@pragprog.com). Visit us at http://pragprog.com for the lowdown on our books, screencasts,
training, forums, and more.

ISSN: 1948-3562

— ii —

http://pragprog.com

Up Front
The Elegance of Scala

by Michael Swaine

This month kicks off a new series on the Scala
language and a series of Pragmatic Bookshelf staff
profiles.

With this September issue we introduce a new series on the Scala language
by Venkat Subramaniam.

Scala has been called the future of the JVM. It’s an inspired blend of
object-oriented and functional features. Simple but powerful, it’s the language
the developers of Twitter chose to implement the back end of their system. If
you don’t know Scala, it’s time to get acquainted. If you’re already acquainted,
there are probably some features you’re not all that familiar with.

Either way, Venkat is the guy to make the introduction. He wrote Programming
Scala [U1] and if you’ve attended many conferences, you’ve probably heard him
speak. And you know you’ll enjoy his introduction to this important language.

To kick off this ongoing Scala coverage, we're sharing another Scala article,
this one by frequent contributor Brian Tarbox.

But wait, there's more.

Jeff Langr and Tim Ottinger are back with another in their ongoing series of
agile insights. Here they reveal the only agile tools you’ll ever need.

We also have another history article by Dan Wohlbruck. This one is about
the origin of that familiar cash-dispensing machine, the ATM.

Ours is a small company, but it can still get confusing for readers to know who’s
who. Plus, some new people have joined the Pragmatic Bookshelf staff this
year. So it seemed like a good time to start cataloguing who does what around
here. Our new series of staff profiles kicks off with an introduction to Miles
Forrest, who does our screencasts and podcasts. A good man to know.

And of course that’s not all. As usual, we culled the collective wisdom of
Twitter for some Choice Bits, and at a time when everyone is insisting that
they know the real secret of Steve Jobs’s success, John Shade admits he has
no special insight into Steve at all.

External resources referenced in this article:

[U1] http://www.pragprog.com/refer/pragpub27/titles/vsscala/programming-scala

PragPub September 2011 1

http://www.pragprog.com/refer/pragpub27/titles/vsscala/programming-scala
http://www.pragprog.com/refer/pragpub27/titles/vsscala/programming-scala
http://www.pragprog.com/refer/pragpub27/titles/vsscala/programming-scala

The Only Agile Tools You’ll Ever Need
A Sanity Check on the Use of Tools

by Jeff Langr, Tim Ottinger

The very first value of agile emphasizes “individuals
and interactions over processes and tools.” But that
doesn’t mean “don’t use tools.”

Good value systems change little over time. Ten years on, and the core values
of agile [U1] haven’t changed one bit. At Agile 2011, the agile manifesto
signatories reaffirmed their belief that these values represent the foundation
for “better ways of developing software.” Agile’s underlying value system will
be championed far longer than the buzzword agile itself.

Of course, values must translate into practices that accommodate the realities
of modern software development. Many larger companies (and even some
smaller ones) have a couple of oft-legitimate goals that can present challenges
to agile adoption:

• They want to hire individuals in remote locations.

• They want to standardize on processes and tools across the enterprise.

A fairly natural response to these goals is to introduce or standardize on a single
agile PM (project management) tool (some which are referred to as agile
application lifecycle management, or ALM, tools). The thought is that a tool
will provide them with immediate visibility across their entire portfolio, and
will also help ensure that remote team members have roughly the same
experience and level of challenge as local members. So what’s the challenge
to agile?

The very first value of agile emphasizes “individuals and interactions over
processes and tools.” This value is bolstered by at least two principles [U2]:

• “Business people and developers must work together daily throughout
the project.”

• “The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.”

We’re quick to point out that the agile values and principles do not say “don’t
use tools!” They instead say we must emphasize “individuals and interactions”
before we consider tools. The two quoted principles remind us that we want
team members to work closely, to converse continually, to collaborate. This
value is practical as well as appealing on the personal level, since
misunderstanding is a frequently expensive kind of error. Face-to-face
communication allows us to iterate and elaborate on our understandings in a
way that written text does not.

What about agile teams that want to have distributed team members? If you
believe the face-to-face principle, distributed teams are immediately less
efficient and effective. So does the notion of “distributed agile” make any
sense? That’s a great question, one that we’ll answer in a forthcoming PragPub
article.

PragPub September 2011 14

http://agilemanifesto.org
http://agilemanifesto.org
http://agilemanifesto.org/principles.html

Not All Tools Are Created Equal
We love great tools! We love tools like Hudson/Jenkins that help bring a team
together, coordinating and tracking things that absolutely must be done with
software. We love tools like Skype that help us communicate cheaply and
effectively when we are forced to be remote. We love how Google docs allows
the two of us to collaborate effectively as we write this article. We love how
Git allows us to safely and effectively distribute and coordinate a source
repository across a team of developers. We have favorite test frameworks and
text editors and IDEs. We even love measurement tools. Notice, however,
that these are not “agile” tools but collaboration and software development
tools—the kinds of tools that provide immediate value.

We love whiteboards and large easel pads, which allow us to capture important
bits of conversations and broadcast them so anyone can see. We love index
cards, which let us capture important bits of conversations no matter where
we are, then effectively use them as collaboration and planning tools (and as
broadcast tools when tacked onto a corkboard). These tools are high-touch
and low-tech. It is trivial to tailor their use to a team’s needs.

We love the non-software tools so much that we created an Agile in a Flash
card:

The blog entry for the card [U3] stirred a bit of controversy (and also provoked
this article). It’s a bit tongue-in-cheek—despite the card’s title, you will
absolutely require additional software-based tools to succeed. We stand by our
core point, however: Seek low-tech and immediate tools before you insist on
using complex software tools.

The Cost of Using the Tool
There is a famous legend of a sacred white elephant owned by a Siamese ruler.
The ruler had a nephew whose wealth and influence posed a threat to the
king. The canny king placed the nephew in charge of the royal white elephant.
The elephant could not be allowed to come to harm, as it would be seen as
scandalous and a bad omen for the kingdom, but the care and feeding of the
elephant was amazingly expensive. The honorable custodianship of the realm’s

PragPub September 2011 15

http://agileinaflash.blogspot.com/2010/06/only-agile-tools-youll-ever-need.html

most sacred symbol eroded the nephew’s power and wealth so that he was no
longer a threat to the king.

A management tool can be of great help, or it can be much like the white
elephant: impoverishing the team with many troublesome tasks to distract
them from daily work, while having such an organizational emphasis that team
members dare not neglect those tedious tasks.

We seek immediacy with our tools. As long as we collaborate in the same
room, direct conversation is the most immediate tool possible; whiteboards
and index cards are a close second. They are instantly accessible, requiring
minimal training, navigation time, maintenance, and cost.

A story from Jeff illustrates how tools can sometimes get in the way of
collaboration:

“I attended a team’s story-gathering session for a new project. The team had
a couple remote members, so they opened a phone conference bridge. They
initiated a desktop-sharing session using WebEx to share their project
information, which was held within an open-source agile project management
tool. For the local attendees, they presented the tool using an LCD projector.

“The team would discuss a story, and the project manager (PM) would attempt
to enter it in the tool. As the team moved on to other potential stories,
discussions arose around its relationship to already-entered stories. These
discussions resulted in changes to other stories—we updated scope or granularity
for some, and ended up deleting others.

“The meeting quickly degraded into all of us watching the PM as she struggled
to keep up with the discussions. She struggled with the tool itself—‘How do
I filter the list of stories?’ ‘How do I make it not require an estimate?’—and
we struggled to follow what she was doing. The essence of the stories we were
trying to brainstorm was lost in the tool and the constraints of a
lower-resolution display. The tool, not the stories, become the focus of
attention.

“Twenty minutes in, we had perhaps three stories entered and still tentative,
and a couple dozen more to peruse. At this pace, we projected that the meeting
would last at least another hour.

“Interestingly, I noted that no one was on the teleconference bridge; for
whatever reason, the remote invitees were not in attendance. I asked the PM
to dispense with both the bridge and desktop sharing. The remaining
team—everyone in the room—moved to a whiteboard, where everyone could
see and contribute to the scribbling of candidate stories. Once we were happy,
we ended the meeting, and the PM typed them into her tool.

“We were done in less than twenty minutes. We would have wasted
significantly more time had we not sought a more collaborative, immediate
tool. Granted, more experience with the tool would have helped, but ultimately
all acknowledged that the tool was at best a distraction during the meeting.”

Tools like Mingle have some ability to support story-related meetings. However,
they still pale in the face of non-software tools that have more immediacy and
collaboration support. It’s not just us: Jon Archer relates that his manager

PragPub September 2011 16

“rarely looks at [their software tool] now, rather prefers the big visible status
on the wall some teams have.”

Our recommendation: Any tool you use for collaboration should eliminate
any potential distractions to focus. Perhaps the best software tool is an empty
text or spreadsheet document, each providing a blank slate and a way to quickly
move around, change, or highlight pieces of information.

Charts and kanban walls are so visible, immediate, and meaningful that they
inspire action. A team may see that they are not tracking well to the sprint’s
goals and proactively start rescoping the work or reorganizing the team. Graphs
of quality trends urge teams to improve their testing and refactoring. In this
way, the physical artifacts have a coercive immediacy. Software-based agile
tools tend to require a browser and/or login and some navigation to reach the
same information, which robs them of coercive immediacy. Sometimes teams
reproduce the tool’s graphs in poster form and hang them on the wall in their
team space to improve their influence.

Software tool learning curves can be steep. The high-end tools generally
attempt to be highly configurable, end-all solutions for agile project and
portfolio management. The increased flexibility comes with increased
complexity, requiring significant training.

But We Already Paid For It
If your organization has invested significant money in an agile PM tool, we’re
not telling you to discard it (not yet, at least). Before you proceed, however,
you must determine what benefits you expect to derive from use of the tool.
Here is a partial list of legitimate goals for organizational investment in a single
tool:

• get quick visibility into status for each project

• understand dependencies between projects

• expose and manage constraints that impact projects

• eliminate the cost of multiple tools

• promote common terminology and share valuable information between
projects

• roll up meaningful statistics across teams

• realize a price advantage compared to individual purchases of desired
tools

Avoid agile tool abuse! Some goals you may have for tools can actually hurt
your efforts. Primarily, don’t use a tool to help pit one project against another.
There is no consistent cross-team measurement of productivity. Due to the
endless variables—team composition, skill set, project constraints, technology
impacts, and so on—it is not possible to compare a team’s productivity to
another in a meaningful way. Comparisons provide little value and may actually
create resentment within your organization.

Don’t allow tools to substitute for collaboration and leadership. No tool is as
valuable as maintaining contact with your customers and development team

PragPub September 2011 17

members. No manager will be a leader who visits their team primarily through
management tool reports. A manager must know his team.

Avoid having anyone other than project managers (or individuals acting in
that role) do data entry in the tool. Most of the tools provide a simplified
interface that allows team members to quickly get in and track their progress
during an iteration. But if you’re doing agile well, project management is not
a full-time job on a single project. In order of desirability:

• The team takes on the responsibility.

• The project manager is simply another team member and contributes in
other ways to the project on a daily basis.

• The project manager tackles multiple projects.

In any case, we’re suggesting that a good project manager can manage the tool,
saving the team members from the effort of re-capturing information that the
project manager should already know.

Avoid tracking too much in the tool. The need to track a significant amount
of day-to-day activity in a tool is a process smell [U4]. On a given day in a typical
agile team doing short iterations, one or two significant things should happen:
the team completes a story or tackles a new story. The effort required to track
these events in a tool should take seconds only. (A very good team might start
and finish a couple stories in a day, doubling the number of seconds required
from the PM.) If stories are started and completed in such short order, tracking
task breakdowns for the story in a tool becomes a complete waste of effort.

“But we usually have four or five stories open at a time, each spanning the
bulk of the iteration.” Don’t do that. It’s not collaborative, and simply
compounds all the challenges of waterfall in a short one-or-two-week space.
Too much work in process also compels you to track more information in the
tool—information that is almost never useful outside that iteration.

Don’t allow the tool to dictate your work system. If you can make stories small
and digestable, you don’t need task tracking. It makes no sense for collaborative
teams to assign work to individuals. It is absurd to track activity (rather than
accomplishment) to the 15-minute interval in the chaotic world of
collaboration. Finally, don’t escalate. If the tool doesn’t tell you what you want
to know, don’t beef up the tool. Demanding more governance information
will not accelerate delivery or improve quality or provide you with any of the
other features that drove you to choose an agile work style.

Wrap-up
Our criteria for tools are that they:

• aid the team (hence the emphasis on development and testing tools)

• add no unnecessary burden to the team

• do not substitute for leadership and management

• provide coercive immediacy to aid the team

• are given their rightful place as aids, not drivers

PragPub September 2011 18

http://www.langrsoft.com/blog/2008/10/task-tracking-is-agile-smell.html

The first purchase you make for an agile team should not be an agile
management tool, and the choice to bring an agile management tool into your
practice should be informed and guided by people who are practicing “agile”
by the principles and values that define the practice. Do not allow agile novices
to be swayed by salesmen and brochures, but carefully pick the tools that will
support your practice and your company if you pick any at all.

About Jeff
Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash [U5] with Tim, he’s written over 100 articles on software development and a couple
books, Agile Java and Essential Java Style, and contributed to Uncle Bob’s Clean Code. Jeff runs
the consulting and training company Langr Software Solutions from Colorado Springs.

About Tim
Tim Ottinger is the originator and co-author of Agile in a Flash [U6], a contributor to Clean Code,
and a 30-year (plus) software developer. Tim is a senior consultant with Industrial Logic where
he helps transform teams and organizations through education, process consulting, and
technical practices coaching. He is an incessant blogger and incorrigible punster. He still writes
code, and he likes it.

Send the authors your feedback [U7] or discuss the article in the magazine forum [U8].

External resources referenced in this article:

[U1] http://agilemanifesto.org

[U2] http://agilemanifesto.org/principles.html

[U3] http://agileinaflash.blogspot.com/2010/06/only-agile-tools-youll-ever-need.html

[U4] http://www.langrsoft.com/blog/2008/10/task-tracking-is-agile-smell.html

[U5] http://www.pragprog.com/refer/pragpub27/titles/olag/Agile-in-a-flash

[U6] http://www.pragprog.com/refer/pragpub27/titles/olag/Agile-in-a-flash

[U7] mailto:michael@pragprog.com?subject=agile

[U8] http://forums.pragprog.com/forums/134

PragPub September 2011 19

http://www.pragprog.com/refer/pragpub27/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub27/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile
http://forums.pragprog.com/forums/134
http://agilemanifesto.org
http://agilemanifesto.org/principles.html
http://agileinaflash.blogspot.com/2010/06/only-agile-tools-youll-ever-need.html
http://www.langrsoft.com/blog/2008/10/task-tracking-is-agile-smell.html
http://www.pragprog.com/refer/pragpub27/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub27/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile
http://forums.pragprog.com/forums/134

