
ThePragmatic
Bookshelf

PragPub
The First Iteration

Issue #26
August 2011

IN THIS ISSUE

* Maik Schmidt builds
an Arduino Video Game System

* Aaron Bedra introduces
ClojureScript

* Trevor Burnham explores
Event-Driven CoffeeScript

* Tim Ottinger and Jeff Langr
promote Virtuous Code

* Brian Tarbox ponders
Code As Dialog

* Dan Wohlbruck recalls
the Origins of HyperCard,
the Web, and Grunge

* ..and John Shade sounds off

PragPub • August 2011

Contents

FEATURES

Make Your Own Video Game System ... 8
by Maik Schmidt

Wouldn’t it be fun to build your own classic video game system to play games like Breakout or Asteroids on your TV? The
Arduino makes it easy and Maik shows you how.

Hello, ClojureScript! .. 26
by Aaron Bedra

Clojure rocks, JavaScript reaches. So why not combine the two?

Decouple Your Apps with Event-Driven CoffeeScript 29
by Trevor Burnham

Node’s event paradigm provides an elegant way of connecting objects, providing maximum flexibility with minimum
boilerplate, and it’s test-friendly.

How Virtuous Is Your Code? ... 34
by Tim Ottinger, Jeff Langr

Tim and Jeff spell out the virtues that they think might constitute a universal definition of good.

Code As Dialog .. 42
by Brian Tarbox

Brian attends a writer’s conference and finds that elements of screenwriting like truthful dialog and the Show Bible apply
surprisingly well to software development.

When Did That Happen? ... 44
by Dan Wohlbruck

In this month 24 years ago, Apple introduced a product that influenced the development of the World Wide Web.

— i —

DEPARTMENTS

Up Front ... 1
by Michael Swaine

We’re looking at CoffeeScript and ClojureScript in this issue, as well as breaking out the wire cutters to build a video game
machine.

Choice Bits .. 2
The top eleven books this month, plus a few threads unwoven from the garment of tweet.

Guru Meditation .. 5
by Andy Hunt

The end of Agile? Lessons from improv.

Calendar ... 46
Author sightings, upcoming conferences, and guess who’s turning 40.

Shady Illuminations .. 53
by John Shade

John shares six reasons to avoid software development as a career.

But Wait, There’s More... ... 56
Coming attractions and where to go from here.

Except where otherwise indicated, entire contents copyright © 2011 The Pragmatic Programmers.

Feel free to distribute this magazine (in whole, and for free) to anyone you want. However, you may
not sell this magazine or its content, nor extract and use more than a paragraph of content in some
other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764. The editor is Michael Swaine
(michael@pragprog.com). Visit us at http://pragprog.com for the lowdown on our books, screencasts,
training, forums, and more.

ISSN: 1948-3562

— ii —

http://pragprog.com

Up Front
Hardware Hacking and JavaScript
Alternatives

by Michael Swaine

We’re looking at CoffeeScript and ClojureScript in
this issue, as well as breaking out the wire cutters
to build a video game machine.

This issue includes articles on both CoffeeScript and ClojureScript, two new
languages that allow you to write JavaScript without having to write JavaScript,
if you follow me.

CoffeeScript was immediately embraced by the great majority of developers
who looked at it, while ClojureScript is being viewed more skeptically. I think
this is at least in part because of confusion about what ClojureScript is for. It’s
really not trying to do what CoffeeScript is trying to do. (The starting point
for any evaluation of ClojureScript is the official rationale [U1].)

The articles are written by Trevor Burnham, who wrote the book on
CoffeeScript [U2], and Aaron Bedra, who is cowriting Programming Clojure,
Second Edition [U3], which will include coverage of ClojureScript. We hope
this issue will encourage people on the fence about one or the other of these
tools to explore both and see what problem each is intended to solve. You
might decide that both have a place in your toolkit.

You may have another kind of toolkit, one with a soldering iron and wire
cutters. Hardware hacking is enjoying a renaissance thanks to the popular
Arduino single-board computers. This month our Arduino guru Maik Schmidt,
author of Arduino: A Quick-Start Guide [U4], returns with another Arduino
project, this time showing you how to build your own video game machine for
rediscovering the innocent fun of classic games like Asteroids and Breakout.

Tim Ottinger and Jeff Langr are back with some agile advice on making your
code virtuous. In doing so, they shuffle their Agile in a Flash [U5] cards and draw
out card #42, which you have to figure has the answer to everything [U6].

In fact, all of our writers this month are familar to these pages. Dan Wohlbruck
is back with another history article, both Brian Tarbox and Andy Hunt get
insights into programming from theater, and John Shade wants to talk to your
mother.

Enjoy the issue and be sure to read all the way through to the end to see what’s
in the pipeline for next month. Oh, and for those of you in the Northern
Hemisphere, we hope the cover images makes you feel cool.

External resources referenced in this article:

[U1] https://github.com/clojure/clojurescript/wiki/Rationale

[U2] http://pragprog.com/refer/pragpub26/titles/tbcoffee/coffeescript

[U3] http://www.pragprog.com/refer/pragpub26/titles/shcloj2/

[U4] http://pragprog.com/refer/pragpub26/titles/msard/arduino

[U5] http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash

[U6] http://en.wikipedia.org/wiki/Phrases_from_The_Hitchhiker's_Guide_to_the_Galaxy

PragPub August 2011 1

https://github.com/clojure/clojurescript/wiki/Rationale
http://pragprog.com/refer/pragpub26/titles/tbcoffee/coffeescript
http://pragprog.com/refer/pragpub26/titles/tbcoffee/coffeescript
http://www.pragprog.com/refer/pragpub26/titles/shcloj2/
http://www.pragprog.com/refer/pragpub26/titles/shcloj2/
http://pragprog.com/refer/pragpub26/titles/msard/arduino
http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash
http://en.wikipedia.org/wiki/Phrases_from_The_Hitchhiker's_Guide_to_the_Galaxy
https://github.com/clojure/clojurescript/wiki/Rationale
http://pragprog.com/refer/pragpub26/titles/tbcoffee/coffeescript
http://www.pragprog.com/refer/pragpub26/titles/shcloj2/
http://pragprog.com/refer/pragpub26/titles/msard/arduino
http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash
http://en.wikipedia.org/wiki/Phrases_from_The_Hitchhiker's_Guide_to_the_Galaxy

How Virtuous Is Your Code?
Can there be a timeless and universal
definition of “good” for software?

by Tim Ottinger, Jeff Langr

That code you thought was so good last year doesn’t
look so virtuous today. Were you just wrong then,
or has the meaning of “good” changed?

Want to get in an argument with a developer? Tell them their code isn’t very
good. The hackles rise, adrenaline kicks in, and then you get that “how dare
you” look. But even though we may defend the quality of our code today in
passionate arguments and reasoned apologetics, three years in the future—or
even three weeks later—we may look back on it with embarrassment.

Disgust with past code is the sure indicator that we’ve learned since then.

We’ve been through myriad definitions of “good code” in the past, some
defensible and some quite dubious:

• Good code is code that gets the right answer

• Good code is written perfectly to spec

• Good code is written defensively

• Good code uses the language’s features the most elegantly

• Good code is expressive

• Good code complies to local style guides

• Good code is well-commented

• Good code uses patterns

• Good code can be read by non-programmers

• Good code passes its tests

• Good code is anything not written here

We find that our definition of “good” doesn’t always transfer as we move from
statically typed languages to dynamic, from procedural languages to functional,
from waterfall methods to agile, or even between contracting and product
development. Perhaps we were good at writing code perfectly “to spec,” but
now that our needs are always changing, we collaborate instead of depending
on detailed specs. Maybe our code was highly defensive, and now we see such
overzealous effort as waste. Did we change, or did “good” change? Were we
really writing good code to begin with, or was it self-congratulatory nonsense?

Can there be a timeless and universal definition of “good” for software? It’s
like looking for the answer to life, the universe, and everything, but Agile in
a Flash [U1] offers a possible answer with card #42 (hat tip to Douglas Adams).

We present each virtue in two parts: the virtue and its opposite. Why? Because
the words on the left side are not very crisp in common usage. By providing
the opposite for each virtue, we help programmers to arrive at our intended
meaning quickly and clearly.

PragPub August 2011 34

http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash

Working, As Opposed to Incomplete
That code should work seems to state the glaringly obvious. Yet working is a
virtue that generates the most heat as the discussion continues. Here is our
favorite formulation of the rule:

“Code that works now is superior to code that may work some day.”

Perhaps you have diagrams of an astrotecture for a future system that, once
written, will never have to change again. However cleverly considered, this
planned system is far inferior to the prototype your neighbor has already written
over the weekend. Perhaps the brilliantly designed and planned software will
be superior when it is built, perhaps not. Perhaps by the time the planned
system is built, the prototype will have evolved through use and feedback into
an amazingly useful program that leads the market for decades. All we can say
is that working code now is better than code that is planned to work someday.

Consider also:

“Code continually proven to work is better than code that may once have worked.”

Code that is written without a solid suite of tests may work, or may have worked
once, but virtue is more clearly displayed by code that passes a battery of tests
many times per day. Automated tests not only demonstrate this virtue, but in
the course of writing tests programmers usually have to improve the simplicity
and clarity of code, not to mention the removal of duplication. We have
become so accustomed and even habituated to TDD that we tend to see
untested code as incomplete.

A real-time system is one in which timeliness is a component of correctness.
In a real-time system, there is a barrier at which being one microsecond later
will render an answer useless or wrong. When the time budget is so tight that
it strains our software technology and computer architecture, dire measures
may be required to meet computational deadlines. In such a situation, working
may be the one virtue that matters. In more workaday situations, however,
working is just a starting point.

Sadly, some programmers assemble code from various files in the project, reach
some semblance of a working state, and then walk away. This is programming

PragPub August 2011 35

at its lowest, basest state. Once your code works, it becomes a matter of raising
the signal-to-noise ratio in ways that are useful to the team. To help guide the
improvement process, we provide the remaining six virtues.

Unique, As Opposed to Duplicated
Code wants to be a unique little flower in the universe, just like most people
do. Code that’s replicated like stubborn little dandelions throughout your
system not only detracts from its beauty, but is very difficult to eradicate once
you let it grow rampant. Pluck the dandelion by its head—clean only the
surface of the code problem—and it ultimately grows back, and stronger too.

Now that we’ve exhausted the analogy, let’s look at some duplication issues
and then see how we might resolve them.

In a popular plugin for a CI tool, the Python code has five near-identical copies
of these seven source lines:

if self.key is None:
raise APIKeyError("Your have not set an API key.")

if data is None:
data = {}

if build_data:
self._build_data(comment, data)

url = '%ssubmit-spam' % self._getURL()

Programmers copy and paste for many reasons [U2]. The jump-start that copying
code gives us may make code duplication [U3] seem like a virtue, but we find
the goodness of copying ends before you check in, and the trouble it causes
extends years into the future. A change to copied code (in our example, imagine
a new choice of exception) will have to be made to many places, and missing
one might have expensive repercussions.

Because duplication is so easy to create, so rampant in the typical system, and
so costly, we list the unique virtue second only to working.

What about the following chunk of code?

data.setdefault('referrer', os.environ.get('HTTP_REFERER', 'unknown'))
data.setdefault('permalink', '')
data.setdefault('comment_type', 'comment')
data.setdefault('comment_author', '')
data.setdefault('comment_author_email', '')
data.setdefault('comment_author_url', '')
data.setdefault('SERVER_ADDR', os.environ.get('SERVER_ADDR', ''))
data.setdefault('SERVER_ADMIN', os.environ.get('SERVER_ADMIN', ''))
data.setdefault('SERVER_NAME', os.environ.get('SERVER_NAME', ''))
data.setdefault('SERVER_PORT', os.environ.get('SERVER_PORT', ''))
data.setdefault('SERVER_SIGNATURE', os.environ.get('SERVER_SIGNATURE', ''))
data.setdefault('SERVER_SOFTWARE', os.environ.get('SERVER_SOFTWARE', ''))
data.setdefault('HTTP_ACCEPT', os.environ.get('HTTP_ACCEPT', ''))
data.setdefault('blog', self.blog_url)

Looks pretty good, right? Something is unique about every line. But what if it
looked more like this:

PragPub August 2011 36

http://agileotter.blogspot.com/2010/07/copy-and-edit-revisited.html
http://en.wikipedia.org/wiki/Duplicate_code

for (key,value) in [
('permalink', ''),
('comment_type', 'comment'),
('comment_author', ''),
('comment_author_email', ''),
('comment_author_url', ''),
('blog', self.blog_url),

]:
data.setdefault(key,value)

for (key,env,default) in [
('referrer', 'HTTP_REFERER', 'unknown'),
('SERVER_ADDR', 'SERVER_ADDR', ''),
('SERVER_ADMIN', 'SERVER_ADMIN', ''),
('SERVER_NAME', 'SERVER_NAME', ''),
('SERVER_PORT', 'SERVER_PORT', ''),
('SERVER_SIGNATURE', 'SERVER_SIGNATURE', ''),
('SERVER_SOFTWARE', 'SERVER_SOFTWARE', ''),
('HTTP_ACCEPT', 'HTTP_ACCEPT', ''),

]:
data.setdefault(key,os.environ.get(env,default))

“Wait, that’s actually longer!” Yet paradoxically there is still less to read because
more of the content is unique. The for loop that unpacks the data also tells
you the meanings of the columns, adding a bit of the clear virtue for free. (We
leave further reduction of duplication here as an exercise for the reader.)

Duplication is a tough enemy. The first challenge is to spot it, not always easy
in a large code base. Once you’ve spotted it, getting rid of it requires either a
lot of tests or a strong stomach for the high risk of shipping potentially defective
code. After all, we want the code to still exhibit the working virtue.

Simple, As Opposed to Complicated
Whenever a developer says “simple,” a dozen of his peers nod their heads but
very few of them have the same understanding of the word. People may mean
“easy to read” or “easy to write” or “uses no advanced features.” We have a
different definition.

We like to think of simplicity as a measurable attribute, consisting of the
number of unique names and operators in a given code component (class,
method, function, subprogram, etc.). Some people have suggested that we call
this virtue “structural simplicity.” That works for us.

If a function has dozens of variables and hundreds of operators with dozens of
paths, it is not simple even if it is clear and works. Code that is well-named is
not necessarily simpler than code that is ill-named, because naming doesn’t
affect the number of operators and entities in the passage of code.

Likewise, copied code is usually no simpler than hand-written code. Terse
code can be simple, or a plethora of operators and side-effects may make it
quite complicated. Working code may be simpler or more complicated than
nonworking code. These virtues are pretty much orthogonal.

Complexity may be moved, but can seldom be entirely removed from a system.
Here are examples of techniques for taming complexity:

• The null object pattern can eliminate dozens and dozens of if..else
statements. Fewer paths is simpler.

PragPub August 2011 37

• Refactoring to replace switch..case statements with polymorphism can
take a decision that is duplicated throughout a code base and replace it
with a decision made once on object construction.

• Using the strategy pattern instead of flags can likewise reduce the number
of decision points in a program.

• Grouping variables into classes and structures can result in code that
manipulates many fewer symbols and is simpler even though the new
class absorbs the collection of variables.

• Treating any set of two or more attributes as a list can reduce
copied-and-edited sections of code with a simple loop.

• Extracting functions can move operations into a new, small, simple
method and reduce the caller’s complexity. This often enhances clarity
and reduces duplication in addition to simplifying the caller.

• Unneeded architectural layers can be collapsed.

• An array of objects is simpler than cross-indexing a number of arrays that
use the same index. It is less primitive, and yet simpler.

There are many other techniques, but these are commonly used to good effect.

Clear, As Opposed to Puzzling
Uncle Bob once mentioned the notion of a new quality metric: WTFs per
minute. (We will claim the delicate expansion of the acronym here: What’s
This Foolishness? …) A WTF is the very opposite of clear, causing its readers
to scratch their heads in puzzlement.

Here is an example of code that is not clear in its intent:

list1 = []
for x in theList:
if x[0] == 4:

list1 += x
return list1

And here is a version that is much clearer without being any less complex
(algorithmically, in terms of symbols being manipulated):

flaggedCells = []
for cell in theBoard:

if cell.isFlagged():
flaggedCells += cell

return flaggedCells

The second version differs in the following ways:

• Variable names are more expressive (variable naming affects only clarity).

• A primitive integer type is replaced with a class (see developed, below).

• Its introduction of an explanatory function isFlagged eliminates an index
and magic number comparison, making code both clearer and simpler.

There are really no good excuses for not constructing your code so that other
developers can understand and maintain it easily, but we’ve heard plenty:

• “I’m in a mad rush.”

PragPub August 2011 38

• “I couldn’t find a good example out there.”

• “You’ll figure out what I meant, just study it a while longer.”

• “I don’t really care about this section of code.”

• “I was experimenting, but I didn’t have the chance to reimplement it.”

• “It just needs to work” (aka “one virtue is good enough for me”).

All else being equal, at least developers don’t usually try to argue that puzzling
code is better than clear and obvious code. The argument is usually about the
trade-off between clarity and other virtues. In such a case, it’s good to
experiment with naming, introducing explanatory variables or explanatory
(inline) function calls. There may be ways of improving clarity that do not
sacrifice other virtues at all.

Is clarity a matter of making the code more “English-like?” Not necessarily.
This example does show improved clarity with its implementation that reads
fairly well as English prose. But in our unique example above, we changed a
step-by-step approach into one arguably less English-like and yet clearer.

Easy, As Opposed to Difficult
Software projects, agile or otherwise, may experience schedule pressure. There
is a lot of eagerness among customers for new features, and developers have
an eagerness to produce them. Eagerness for features and awareness of costs
are healthy drivers.

We want to write, test, and release code more quickly so we can fulfill our
promises, but often we don’t get past the wishing phase. We don’t always go
to the trouble of making our systems more easily workable. For instance, what
if the programmer in the first example (unique) had taken a little time to put
his data in tables and to write subroutines instead of copying code? It would
be easier to add data to the table than to add commands the old way, and it
would be easier to create a new interface point if there was less code to copy
and test. The payback would have been immediate, and the changes are simple,
but they were “not what he was here to do.”

Oddly, we find people more willing to add complexity in the form of if
statements, switch statements, unnecessary design patterns, and bloated
architectural ideals than to invest a fraction of that time to make code more
maintainable.

A little syntactic sugar can often turn a difficult, problem-fraught job into a
simple and pleasant one. When Python or Ruby metaprogramming is done
well, the code is easier to write. When it’s done badly, it confounds
problem-solving (making it less easy).

In a system with the easy virtue, everyone on the team moves a little faster.
It’s not hard or tricky to add new code, and nobody is wrestling with obscure
bugs or tedious syntax.

How much time does your entire team spend in a month to make their jobs
easier?

PragPub August 2011 39

Developed, As Opposed to Primitive
The word developed in this context means that a good set of supporting
mechanisms has been created and groomed. (Think “well-developed.”) It may
be a set of functions, classes, libraries, or even servers.

In an undeveloped system, the programmer is doing everything by hand. Instead
of using a list comprehension, he must write a for loop with an integer index.
Instead of walking through a list of tuples, he has to correlate a number of
arrays on the same index variable. Instead of creating an XML node and adding
properties, he must write angle brackets and strings to a stream. In this way,
a developed language system has virtue over one that is less rich in mechanism
and data types.

This virtue is an enabler to the virtue of easy, and indeed may be a side-effect
of unique and simple. One difference that makes developed stand out is the
choice of moving complexity out of user code and into service routines.

Where the underlying system is underdeveloped, developers will often create
code generators or resort to copy-and-edit programming. One can hardly blame
them for not wanting to deal with primitive containers, primitive variables,
and the like.

When we say developed, we’re measuring the amount of aid a component
provides, not the number of hours of effort that have been put into it. A large,
complex system may have had many man-years of development activity, yet
provide little aid to programmers. Such a system may actually be net-negative,
costing more in frustration and development time than it saves. We find a
developed system to be rich in mechanism, with just enough policy to help
programmers do a good job without restricting them to preconceived use cases.

Brief, As Opposed to Chatty
If we never had to maintain code, code would need only the virtue of working.
However, the vast majority of programming work requires some level of
maintenance to existing code. As a considerate developer, then, we take care
to craft our code to say exactly what we mean, nothing more. Prolix code
requires more comprehension time and generally more maintenance effort.

Remember that brief does not mean cryptic, however. Brief code must remain
easy, simple, and clear if it is to retain all of the necessary virtues.

Here is a semi-virtuous example from earlier:

flaggedCells = []
for cell in theBoard:

if cell.isFlagged():
flaggedCells += cell

return flaggedCells

Our C# friends are about to write follow-up comments telling us that this is a
good place to use LINQ. Pythonistas are ready to suggest list comprehensions.
We agree. Such features allow us to put code like this into a single statement:

return [cell for cell in theBoard if cell.isFlagged()]

PragPub August 2011 40

The non-Python, non-LINQ, non-FP folks may find it puzzling at first glance,
and then realize with a start that this terse code is actually more readable than
the longer, explicit loop above.

The more terse code allows us to see the entire algorithm in a glance. We do
not have to wade through a sea of variables and operators. This is the kind of
brevity that we look for (and for which we expect to see many followups from
functional programmers).

The virtue of brevity speaks directly to the concept of abstraction in
programming. We seek for our code to quickly express its intent, by emphasizing
more of what it is doing and deemphasizing how the code is accomplishing it.

Warriors Of Virtue
As developers, our first job is to make the code work. Yet our task does not
end there. We accept that sometimes one virtue may be locally diminished a
bit for the sake of other virtues, but code that merely works (or is merely easy
to write) is not going to serve developers as well as code that is virtuous in
many ways.

Our employers and clients need us to build systems that are economical to
amend and improve. If we churn out great heaps of steaming refuse that worked
once, we are neither serving their interests nor our own.

As programmers over the magical age of 40, having survived bubbles and
downturns and recessions and corporate takeovers, we have learned that your
reputation for good work is the only real job security. Writing virtuous code
serves us in the long term as well as the short.

Are these virtues a universal definition of good? We think they might be, but
we welcome your suggestions, arguments, improvements, and corrections.

About Tim
Tim Ottinger is the originator and co-author of Agile in a Flash [U4], a contributor to Clean Code,
and a 30-year (plus) software developer. Tim is a senior consultant with Industrial Logic where
he helps transform teams and organizations through education, process consulting, and
technical practices coaching. He is an incessant blogger and incorrigible punster. He still writes
code, and he likes it.

About Jeff
Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash [U5] with Tim, he’s written over 100 articles on software development and a couple
books, Agile Java and Essential Java Style, and contributed to Uncle Bob’s Clean Code. Jeff runs
the consulting and training company Langr Software Solutions from Colorado Springs.

Send the authors your feedback [U6] or discuss the article in the magazine forum [U7].

External resources referenced in this article:

[U1] http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash

[U2] http://agileotter.blogspot.com/2010/07/copy-and-edit-revisited.html

[U3] http://en.wikipedia.org/wiki/Duplicate_code

[U4] http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash

[U5] http://www.pragprog.com/refer/pragpub25/titles/olag/Agile-in-a-flash

[U6] mailto:michael@pragprog.com?subject=virtue

[U7] http://forums.pragprog.com/forums/134

PragPub August 2011 41

http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub25/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=virtue
http://forums.pragprog.com/forums/134
http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash
http://agileotter.blogspot.com/2010/07/copy-and-edit-revisited.html
http://en.wikipedia.org/wiki/Duplicate_code
http://www.pragprog.com/refer/pragpub26/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub25/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=virtue
http://forums.pragprog.com/forums/134

