The .
Pragmatic

ookshelf

IN THIS ISSUE

* A CoffeeScript Intervention
* Trench Warfare

* Catch the Pig!

* Agile Reflections

* When Did That Happen?

reality,

Issue #23
May 2011

o m<pran
GwEe SERITITO
0P X Z—T

A
£
K
P
U
z
@
1

6

Uit < Om

o

PragPub - May 2011

Contents

FEATURES

A CoffeeScript INterventioncceccncnceneensensessersessessessesssessessssssseces 14
by Trevor Burnham

Trevor takes us on a tour of some of the ways this hot new language improves on JavaScript.

Trench Warfare ..eceeeeeeeeesseesesssessssssesesssesessssssssesssseseseseess 18
by Jared Richardson

Today's software shops are often run like WWI military operations. It's time to get out of the trenches.

Catch the Pig!
ACN the LFIZ0 oo rccrtrcccnrntteccsnnrreecssnnteseessssnsssessssssaseessnnns 21

When everything is crashing down around you, sometimes the best thing you can do is to let it crash.

Agile RefleCtionscoeevveneirinininiiseiseineisinsssiss 23
by Jeff Langr, Tim Ottinger

Jeff and Tim take a break from their recent articles on agile practices to reflect on their personal experiences with agile
practices, and specifically extreme programming (XP).

When Did That Happen?eieeseseineieieesensessessessessssssssssssssses 28
by Dan Wohlbruck

How a hand-written document composed on a train ride drove computer architecture for half a century.

DEPARTMENTS

UP FLONE ceicctcnnicnsecnsecasenessesessessssesssssssssssssscssassssssssssssssssssssssssssesss |

On CoffeeScript, the illuminating power of a good metaphor, and a Sudoku solution.

. .
CROICE BItS oottt sessssssssessssssssesssssssessssesssssssssessssssssessesssesessese 3
The CoffeeScript controversy, Arduino feedback, misunderstanding the boiling frog metaphor, and other twittery.

GUIU MEdItation ..ceveeereverererereseereseseesesesesesesesssesesssesesessssesesesssesessssesesessssesesessass O
by Andy Hunt

A truly agile project team lives on the edge of chaos.

f h A .1 i
VVHY of the glie W ATTIOL cecvecrecerccrccrscsscsrossossessessesssscssssssssossssssssssssssssssssssssssssosse 10

by Jonathan Rasmusson

Imagining all the ways the system could fail can blind you to seeing how to make it succeed. Never be afraid to ask, “What
if it just worked?”

Calendar ...oocveeeereeeeereesetesetes et ses s s sesessesessesessesassessssessssesssseseses 31
Author sightings, upcoming conferences, and all the coverage of the royal wedding that you will ever need.

Shady Illuminations38

by John Shade

John casts a jaundiced eye at the recent storm in the realm of cloud computing and introduces a bovine metaphor.

Except where otherwise indicated, entire contents copyright © 2011 The Pragmatic Programmers.

Feel free to distribute this magazine (in whole, and for free) to anyone you want. However, you may
not sell this magazine or its content, nor extract and use more than a paragraph of content in some
other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764. The editor is Michael Swaine
(michael@pragprog.com). Visit us at http://pragprog.com for the lowdown on our books, screencasts,
training, forums, and more.

ISSN: 1948-3562

http://pragprog.com

Up Front
The Bright Light of Metaphor

by Michael Swaine

Welcome to PragPub for May, 2011. Pull up a chair.
We're polishing metaphors today.

Mark Twain generally gets the credit for that line about the difference between
the almost right word and the right word being the difference between the
lightning-bug and the lightning. But Twain acknowledged that he got the
comparison from Josh Billings. Twain made it his own, though, repeating it

often. It’s a figure of speech that bears repeating.

And it’s when we are using figures of speech, particularly metaphor, that the
exact right word really shines. I'd like to think that I selected the right word
just then, the word “shine.” Because that’s what we use metaphor for: to shine
light on some aspect of the subject. Anywhere there is complexity, metaphors
are a powerful tool for shining light into the darkness. As people who write or
talk about software, we need precise metaphors.

As it happens, several of this month’s writers employed vivid metaphors in
their contributions to the issue. So I thought it might be worthwhile to focus
a little extra light on their illuminating figures of speech.

Jared Richardson uses the metaphor of WWI trench warfare to shine some
light on certain problems in software shops that lead to stagnation. Brian
Tarbox uses a very different metaphor involving a pig to offer some enlightening
advice on what to do when everything is falling down around your ears. Jeff
Langr and Tim Ottinger reflect on over a decade of agile experience, and along
the way have some bright things to say about the use of metaphor in XP and
BDD (among other things).

John Shade’s essay this month is all about cloud computing, and you can’t talk
about cloud computing without getting up to your eyebrows in metaphors.
John doesn’t even try to avoid the metaphors. You can decide for yourself
whether or not that’s a good thing.

Because metaphors can get you in trouble. “Done badly,” Tim says, “it turns
the system into a series of odd puns and confusing turns of phrase.” And as
Andy Hunt points out in this month’s “Guru Meditation,” “A model is not
reality.”

Also in this issue, Trevor Burnham shows how CoffeeScript, the hot new
language that he calls “JavaScript done right,” saves you from some of

JavaScript’s nastiest traps.

Plus we have another computer history article by Dan Wohlbruck, Choice
Bits, and the events calendar. There’s some nice feedback in Choice Bits on
last month’s Arduino issue, and below you’ll find the solution to last month’s
Arduino-themed quiz.

I hope you enjoy the issue.

PragPub

May 2011 1

Agile Reflections

A Dozen Years or so of Agile
Development Practices

by Jeff Langr, Tim Ottinger

Jeff and Tim take a break from their recent articles
on agile practices to reflect on their personal
experiences with agile practices, and specifically
extreme programming (XP).

Recently we’ve been running a series of articles on agile practices by Jeff Langr and
Tim Ottinger, the authors of Agile in a Flash 1. This month, Jeff and Tim shift
gears to reflect on their personal experiences with agile practices and specifically
extreme programming (XP). In these short reflections, Jeff and Tim share how XP
has changed their professional lives.

Jeff: 1 found out about extreme programming at a developer’s conference in
San Jose in 1999, where I attended a talk by Kent Beck, who I'd followed in
the Smalltalk world. We had tried spiraluz; at MCI a few years prior. I'd loved
its incremental/iterative cycles, but had struggled with how to keep it from
degrading over time. XP immediately felt right to me. My first thought was,
“Oh, holy crud, this is how you make it work!” A dozen years later, the most

enjoyable projects I’ve ever been on have been XP efforts.

Tim: I was a Usenet denizen back when Usenet was the “big thing.” I was on
the C++ and object-oriented groups when Kent and company started talking
about this wild and crazy new way of developing software called XP. It sounded
daft at first blush, but the more we discussed it the more it spoke to me. It was
years later when I finally converted to XP. It remains a brilliant and

counter-intuitive system that works.

Continuous Integration (Cl)

Tim: Before continuous integration, I remember suffering through “hell
week”—or “hell month”—when all the developers tried to get their code to
work together, and QA tried to find the seams where disparate changes created
side-effects and failures. No other single practice improves a software
department as much as CI. It smooths the process, adds predictability, and
makes continual testing possible. It helps draw a collection of developers
together into a team all of the time, not just in the pre-release crunch. It creates

the necessary context for the other practices to produce value.

Jeff: From the converse standpoint, CI requires other key practices to make it
work. First, it falls flat without the tests—frequent integration causes too many
problems without controls to let developers know that their change didn’t
integrate with the rest of the code. Also, in settings where I’ve seen teams use
a ClI server to track a build but had few or no tests, the developers generally
ignored it since it told them little about the health of the system. Finally,
frequent check-ins create more clashes in poorly designed systems, so we're
driven to build better systems with more cohesive classes. Cl is a great way to
work, but is even more valuable when combined with these other agile

development practices.

PragPub

May 2011 23

http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
http://en.wikipedia.org/wiki/Spiral_model

Test Driven Development (TDD)

Jeff: Agile or no agile, XP or no XP, TDD is a fantastic practice that continues
to teach me endless lessons. Equally thrilling is seeing the light bulbs come on
in peoples’ heads as they take up and embrace the practice. A favorite
encounter was revisiting a team who’d shipped a 100,000 line Java application.
The stats on the wall told one story—monthly product defect counts were 0,
3,1,2,1,1,4,2,0, 1, 0, 0. More gratifying was my discussions with team
members, all very proud of their work, and emphatic that their use of TDD
was what had made them successful. I go faster with TDD in the long run, and
it’s fun—what’s not to like?

Tim: It’s funny how much experience exists in the world regarding TDD, and
yet how controversial it has remained. It is not intuitive that you’ll make better
(faster, steadier) progress by writing tests first, but it is so. It is not intuitive
that writing tests first is important, yet it produces better tests and more
manageable code. TDD is not a substitute for design or algorithm analysis, but
it allows us to explore design and algorithms. The act of writing tests first is a
powerful boon to developers, nearly equal to the value of having copious tests.
Even so, it is one of the points that must be constantly defended, sold, and
re-explained—at least to people who have not tried it long enough to get a
handle on it. Maybe the biggest lesson I learned from TDD was not to prejudge,

but to immerse myself in a practice before judging its value.

Design Improvement

Tim: I have been an object-oriented nutcase for many years. Before I heard
Robert Martin explain his first principle, or dug through my first copy of
Structured Programming, I knew that we weren’t doing things as well as we
could and that the problem was in our daily work instead of our closed-door
architecture meetings. We weren’t going wrong from the start, we were steering
wrong as we traveled. Just as cruft and crud are emergent, a clean design can
be emergent. It’s all in the small steps and paying attention to the shape the
code is taking.

Jeff: I think continual design improvement through refactoring is one of the
hardest technical practices to get right. Out of the hundred-plus systems I've
seen where the developers employed TDD, the code was refactored really well
in less than a handful. Over time, poor design—lots of duplication, poorly
structured and otherwise difficult code—is what will slow you down most from
a technical standpoint. It’s easy to see why—who hasn’t spent countless hours
wallowing through convoluted code in an attempt to simply figure out what
it’s supposed to be doing?

Coding Standard

Jeff: Really, having a standard is agile? It’s foundational to me, but there are
plenty of shops where self-absorbed developers take pride in bucking standards
at every possible turn. I've seen too much pointless waste from lack of standards,
coding or otherwise. Wasted time arguing, wasted time understanding each
others’ code (little bits of discordance add up to significant irritants over time),
wasted time reworking other peoples’ code, wasted pairing sessions, and no

end of increased problems due to the silos that insufficient standards create.

PragPub

May 2011 24

Before you can be a true team, you have to learn how to agree on a few key
things.

Tim: My old naming paper ended up in a lot of coding standards, so it’s
unsurprising that ’'m in support of standards. The change that agile brought
me was an insistence on minimalism. We wrote style guides and programming
tutorials and recipes and pontification into our tomes of style, always hoping
our effort was not wasted. It always was. Instead, a more agile way of
programming proved possible with a one-page guide and a collective

understanding of how code should be. Less is more.

Collective Code Ownership

Tim: Collective code ownership is another of those “in the large”
improvements. When authorship matters and individuals “own” modules, you
would expect programmers to make changes more quickly. And it may be true
“in the small.” But a person can work on only one thing at a time. In the large,
requests for changes to a given module will pile up and create large-scale delays.
Collective ownership also attacks the “culture of blame” because each
developer’s work is mingled with the work of all the others. This particular
value has been close to my heart even before I heard of “agile” or “XP.” It’s

what smart teams have done for ages.

Jeff: Heading out of the 90s, | was coming from an environment where class
ownership was commonplace. It had seemed like an OK practice when I was
able to control virtually all of a subsystem. But every time I ventured outside
of my realm, I got frustrated at having to wait on other developers. And once
again, | started recognizing the haphazard results of silo development: some
good code, most just passable, and some truly wretched subsystems we

“inherited” from long-gone travelers.

Simple Design

Jeff: Most casual readers interpret simple design as “you ain’t gonna need
it"—in other words, put into the system the simplest possible set of design
elements for the features you are working on currently. That’s a start, but the
full meaning is captured in Kent Beck’s four rules, in priority order: code must
run all its tests, the system must exhibit minimal duplication, it must express

intent clearly, and it must contain a minimum number of classes and methods.

Simple design is the most under-appreciated gem of agile programming. I've
built some subsystems where I deliberately focused only on these four rules.
The emergent designs, which I modeled after completion, were elegant and
flexible, about as good as any other outcomes where I'd brought my full design

background to bear.

Tim: Oh, the joys of YAGNI and KISS and DRY (you ain’t gonna need it;
keep it simple, stupid; and don’t repeat yourself)! XP again taught me to do
less, better. I used to engage in a lot of speculative design, and it didn’t always
pay off. I hoped to run a net positive, but was too afraid to measure it. My
designs often were intricate and overly abstracted. I was well-intentioned, but
things got out of hand. With simple design, I have less to worry about, and
the supporting XP practices (testing, etc.) allow me to make changes as I need

them. It is like a super power that makes my mistakes small and correctable.

PragPub

May 2011 25

System Metaphor

Tim: Metaphor is funny stuff. Of all of the practices, it’s the one that gets the
least play. When it’s well used, it really can help you to visualize a design and
name the various parts of the solution. Done badly, it turns the system into a
series of odd puns and confusing turns of phrase. If it’s not done at all, the
system will be a mess of mixed ideas and names drawn from concrete details
leaking into abstractions. What has stood the test of time is the principle that
we need a shared understanding of how our systems work, and a high-level

vocabulary we can use to discuss it.

Jeff: We all struggled initially with finding the value in XP’s metaphor practice.
Either you had a convenient metaphor (“shopping cart” being the canonical
example), or you were stuck with the “naive metaphor” of naming a rose a
Rose. But isn’t Eric Evans’ concept of domain-driven design (DDD) what Beck
was really getting at? Both metaphor and DDD promote having a common,
ubiquitous language, getting the customer and development team all on the
same terminology page. Today’s programmatic embodiment of metaphor and
DDD is BDD (behavior-driven development).

Pair Programming

Tim: Pair programming may be the most surprising practice of all. You would
expect it to be inefficient, riddled with personality problems, imposing, and
expensive. Instead, it is a highly streamlined way to get work done, saving
think time, preventing errors, eliminating “stovepipe” specializations and their
associated queuing, reinforcing good design practices, and accelerating teams.
[t is exactly not what you expect it to be. Most of us who started pairing just
to improve the code end up loving it and looking forward to our next session.
Add pair programming to the other practices, and soon you truly have a proud

and competent team.

Jeff: And yet pairing still languishes. It’s probably the hardest XP practice to
implement and sustain. Why? Because it requires you to learn how to
collaborate closely with every other member of your team. That’s tough! With
pairing, programming moves from a solo artistry—subject to the whim of each
individual’s capabilities—to a team effort, requiring coordination and concert.
[t requires strong social spirit and the desire to succeed, but it’s extremely
rewarding if you can get pairing clicking in your team.

Conclusions

Tim: Whatever comes next will come on the back of agile practices. It will
likely leverage what we are learning about managing teams, managing code
bases, new open-source frameworks and libraries, new ways to sell software,
and possibly new tools for telepresence. Shops that have not adopted XP values
may find a different way into the future, but the smart money is not on them.

Jeff: Agile caught on a lot better than that thing called XP from whence these
development practices originally came. But I was and remain greatly concerned:
the reality is that it’s hard enough to build out a solid system, even with
never-changing business priorities and without short cycles. Agile turns that

upside down and can devastate a system’s quality in very short order if you

PragPub

May 2011 26

don’t have the controls and disciplines to keep it clean. The teams who really

want to be successful are coming back to “XP in all but name.”

About Jeff

Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash wa with Tim, he’s written another couple books, Agile Java and Essential Java
Style, contributed to Uncle Bob's Clean Code, and written over 90 articles on software
development. Jeff runs the consulting and training company Langr Software Solutions from
Colorado Springs.

About Tim
Tim Ottinger is the other author of Agile in a Flash wa, another contributor to Clean Code, a

30-year (plus) software developer, agile coach, trainer, consultant, incessant blogger, and
incorrigible punster. He writes code. He likes it.

Send the authors your feedback s or discuss the article in the magazine forum we.

External resources referenced in this article:

w1

[u2]

3]

4]

[Us]

el

http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
http://en.wikipedia.org/wiki/Spiral_model
http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile-reflections

http://forums.pragprog.com/forums/134

PragPub

May 2011 27

http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile-reflections
http://forums.pragprog.com/forums/134
http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
http://en.wikipedia.org/wiki/Spiral_model
http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub23/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile-reflections
http://forums.pragprog.com/forums/134

