
ThePragmatic
Bookshelf

PragPub
The First Iteration

Issue #22
April 2011

The Arduino Issue
In which we bring serious
software development tools to
the popular single-board
platform.

The Arduino Issue
In which we bring serious
software development tools to
the popular single-board
platform.

IN THIS ISSUE

* Advanced Arduino Hacking
* Create your Own Arduino IDE
* Testing Arduino Code
* Test Abstraction
* When Did That Happen?

PragPub • April 2011

Contents

FEATURES

Advanced Arduino Hacking .. 4
by Maik Schmidt

You want to get into this popular open-source electronics prototyping platform, but you don’t want to have to work with
development tools designed for artists and hobbyists. Maik shows you how to develop software for Arduino in a professional
way.

Create your Own Arduino IDE .. 22
by Maik Schmidt

If you’re going to do serious Arduino development, you may want to work in an environment more like your day job.
Here Maik shows how to set up your own IDE.

Testing Arduino Code ... 24
by Ian Dees

Ian brings the testing power of the Ruby-based Cucumber testing library to the Arduino.

Test Abstraction .. 33
by Jeff Langr, Tim Ottinger

Use the techniques in this article to sniff out problems and improve tests by increasing their level of abstraction.

When Did That Happen? ... 42
by Dan Wohlbruck

Claude Shannon was born in this month in 1916. Two decades later, he made history.

— i —

DEPARTMENTS

Up Front ... 1
by Michael Swaine

Just because it’s a hobby that doesn’t mean you don’t need power tools.

Choice Bits .. 2
A few selected sips from the Twitter stream.

The Quiz ... 45
by Michael Swaine

Just your basic Arduino Sudoku.

Calendar ... 47
After a slow-ish winter, things are really heating up this spring.

Shady Illuminations .. 58
by John Shade

Some elements of Sun Microsystems were never going to survive the move to Oracle. John runs down the Doomed from
the Get-Go list.

Except where otherwise indicated, entire contents copyright © 2011 The Pragmatic Programmers.

Feel free to distribute this magazine (in whole, and for free) to anyone you want. However, you may
not sell this magazine or its content, nor extract and use more than a paragraph of content in some
other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764. The editor is Michael Swaine
(michael@pragprog.com). Visit us at http://pragprog.com for the lowdown on our books, screencasts,
training, forums, and more.

ISSN: 1948-3562

— ii —

http://pragprog.com

Up Front
Bringing Serious Software
Development to the Arduino

by Michael Swaine

Welcome to our first-ever Arduino issue!

Arduino, as the whole geek-speaking world knows by now, is an extremely
accessible open-source single-board microcontroller designed for pursuing
electronics projects. Also as the whole geek-speaking world knows by now,
Arduino is very popular. Over 100,000 boards have been sold so far, and the
fascination shows no signs of abating.

We’re a hard-core software developers’ magazine, so that’s the approach we’re
taking to Arduino in this issue. We figure you want to get into this popular
open-source electronics prototyping platform, but you don’t want to have to
work with development tools designed for artists and hobbyists. So Arduino
master Maik Schmidt shows you how to develop software for Arduino in a
professional way. Ian Dees gets into the act, too, showing how to bring serious
software testing to the Arduino. Just because it’s a hobby that doesn’t mean
you don’t need power tools.

Of course we also have lots of other good stuff in this packed issue. Jeff Langr
and Tim Ottinger offer up a thoughtful article on Test Abstraction, Dan
Wohlbruck offers another in his series on computer history, John Shade has
some thoughts on Sun, Oracle, and the Doomed List, and there is a quiz
(Arduino-themed, of course).

Arduino Resources
We recommend that you include in your Arduino toolkit Maik’s book, Arduino:
A Quick-Start Guide [U1]. But there are other books to check out, including
these two new ones from O’Reilly: Arduino Cookbook [U2] by Michael Margolis
and Make: Arduino Bots and Gadgets [U3] by Tero Karvinen and Kimmo
Karvinen.

Also, here are three sites Maik tells us are must-visits for the Arduino hacker:
makershed.com [U4], adafruit.com [U5], and hackaday.com [U6].

External resources referenced in this article:

[U1] http://pragprog.com/refer/pragpub22/titles/msard/arduino

[U2] http://oreilly.com/catalog/9780596802486/

[U3] http://oreilly.com/catalog/0636920010371/

[U4] http://makershed.com

[U5] http://adafruit.com

[U6] http://hackaday.com/

PragPub April 2011 1

http://pragprog.com/refer/pragpub22/titles/msard/arduino
http://pragprog.com/refer/pragpub22/titles/msard/arduino
http://oreilly.com/catalog/9780596802486/
http://oreilly.com/catalog/0636920010371/
http://makershed.com
http://adafruit.com
http://hackaday.com/
http://pragprog.com/refer/pragpub22/titles/msard/arduino
http://oreilly.com/catalog/9780596802486/
http://oreilly.com/catalog/0636920010371/
http://makershed.com
http://adafruit.com
http://hackaday.com/

Test Abstraction
Eight Techniques to Improve Your Tests

by Jeff Langr, Tim Ottinger

Use the techniques outlined in this article to sniff
out problems and improve tests by increasing their
level of abstraction.

In this article we illustrate several useful techniques you can use to improve
your tests by increasing their level of abstraction.

Expressive Tests
When doing TDD, the tests you create are the entry point into your system.
Tests are where the coding starts. They are also how you drive changes into
the system, whether those changes represent new features or defects that you
must fix. When you’ve taken the care to craft your tests to act as “specifications
by example,” you can learn about system behaviors and class capabilities from
reading the tests.

For those who haven’t ingrained the discipline of TDD, the natural inclination
is to find reasons not to write tests—to those developers, TDD is just more
work. We hear many excuses:

• “This code was in a larger method that was already tested. All I did was
move it to a new class, and there’s no way I could have broken it.”

• “The whole feature is covered by an acceptance test.”

• “The method is so simple I can look at it and know it’s not broken.”

• “I don’t have time.”

• “Our coverage is good enough.”

“... So why do I need to write additional tests?”

Why? First and foremost, because other developers will need to understand
the code at some point down the road. They may need to change the behavior
of the class, or they may want to reap the benefits of reuse and consume the
class from other client code. Without tests, they’ll have to spend extra time
digging through the code to fully understand its behavior.

Describing your code with readable tests is an act of courtesy. It is also the
mark of a professional who has moved out of the novice TDD phase—someone
who is striving to craft better tests instead of seeking to avoid writing them.

Test Abstraction
In our PragPub article on abstraction [U1], we lightly touched on the topic of
test abstraction—the idea that a test needs to clearly specify its intent. You
may recall that we used Uncle Bob’s definition of abstraction: “Amplification
of the essential, elimination of the irrelevant.” Let’s talk about some concepts
and techniques for making your tests suitably abstract.

PragPub April 2011 33

http://www.pragprog.com/magazines/2011-02/abstraction

Bill Wake’s Arrange-Act-Assert (AAA) pattern [U2] for test organization tells
you to visually organize your tests—by grouping lines of code—around their
core three steps: setup (“arrange”), execution (“act”), and verification (“assert”).
For a test reader to easily understand the intent of a test, these three test steps
must be distinct from each other.

Kent Beck’s rules for simple design (we have an Agile in a Flash card [U3] for
that too) are the next things to consider. The second and third steps of the
simple design rules are:

1. …

2. No code is duplicated

3. Code clearly expresses intent

The rules are in priority order. Getting rid of duplication trumps code
expressiveness. However, this ordering has been debated often, with some
developers suggesting a reversal, and other developers suggesting that these
two rules are roughly on equal footing.

With respect to tests, if you strive to eliminate duplication without considering
expressiveness, you’re going to bury important concepts in setup methods.
Sure, it’s usually easy to navigate to a setup method and then return to the
test method, but that navigation represents extra “travel” on the part of the
test reader. Eventually, unnecessary travel adds up to significant wasted time
and wears a test reader down. It is especially unwelcome if the reader is only
visiting the test because his or her most recent code change caused it to fail.

Following is a test that exhibits some test smells, culled from a well-known
open source effort. Let’s see what we can do to improve it.

The test testMessageKey isn’t terribly long but it’s not quickly digestible either.
If it failed, how long would it take for you to understand why?

PragPub April 2011 34

http://agileinaflash.blogspot.com/2009/03/arrange-act-assert.html
http://agileinaflash.blogspot.com/2009/02/simple-design.html

public void testMessageKey() {
HashMap<String, Object> params = new HashMap<String, Object>();
params.put("foo", "200");

//
HashMap<String, Object> extraContext = new HashMap<String, Object>();
extraContext.put(ActionContext.PARAMETERS, params);

//
try {

ActionProxy proxy = actionProxyFactory.createActionProxy("",
MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);

ValueStack stack = ActionContext.getContext().getValueStack();
ActionContext.setContext(new ActionContext(stack.getContext()));
ActionContext.getContext().setLocale(Locale.US);
proxy.execute();
assertTrue(((ValidationAware) proxy.getAction()).hasFieldErrors());

//
Map<String, List<String>> errors =

((ValidationAware) proxy.getAction()).getFieldErrors();
List<String> fooErrors = errors.get("foo");
assertEquals(1, fooErrors.size());

//
String errorMessage = fooErrors.get(0);
assertNotNull(errorMessage);
assertEquals("Foo Range Message", errorMessage);

} catch (Exception e) {
e.printStackTrace();
fail();

}
}

So, what can we do to improve this?

Unnecessary Test Code
If you’re running your test suite in an environment that suppresses stack traces
on test failure, it may seem advantageous to have included the printStackTrace
statement. But from the standpoint of cohesion, it’s not necessary and
represents irrelevant clutter in your tests.

A single JUnit test method should capture a single case, start to finish. Design
the bulk of your tests as “happy path” cases that demonstrate useful
functionality, blissfully ignoring any possible errors. When the system under
test (SUT) throws an exception, JUnit catches it and reports a test failure. So
you can remove extracurricular constructs, such as the try/catch block in
testMessageKey.

Don’t waste too much time designing tests that provide volumes of information
when they fail. Once you’ve gotten them to pass initially, they will almost
always pass. If tests fail in a non-obvious way, it’s a simple matter to bolster
them with helpful failure messages and then re-run them. Instead, make the
message as brief and clear as possible.

Another piece of clutter is the assertNotNull statement near the end of the test.
Such assertions are absolutely unnecessary when followed by a subsequent test
that uses the same reference. In testMessageKey, the assertNotNull statement
is immediately followed by assertEquals("Foo Range Message", errorMessage). If
the reference is null, the subsequent assertion will make it perfectly clear. Run
the test while it is failing and check the error message for yourself.

PragPub April 2011 35

Here’s the new code, with the try/catch block and unnecessary assertNotNull
statement removed:

public void testMessageKey() {
HashMap<String, Object> params = new HashMap<String, Object>();
params.put("foo", "200");

//
HashMap<String, Object> extraContext = new HashMap<String, Object>();
extraContext.put(ActionContext.PARAMETERS, params);

//
ActionProxy proxy = actionProxyFactory.createActionProxy("",

MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);
ValueStack stack = ActionContext.getContext().getValueStack();
ActionContext.setContext(new ActionContext(stack.getContext()));
ActionContext.getContext().setLocale(Locale.US);
proxy.execute();
assertTrue(((ValidationAware) proxy.getAction()).hasFieldErrors());

//
Map<String, List<String>> errors =

((ValidationAware) proxy.getAction()).getFieldErrors();
List<String> fooErrors = errors.get("foo");
assertEquals(1, fooErrors.size());

//
String errorMessage = fooErrors.get(0);
assertEquals("Foo Range Message", errorMessage);

}

Missing Abstractions
We want to quickly understand the core concepts of each test we read.
Anywhere we find two or more lines used to express a single concept, there
might be bloat that we can eliminate.

In testMessageKey, we see a common construct: verifying that a collection has
only a single element, and then verifying the value of that single element:

List<String> fooErrors = errors.get("foo");
assertEquals(1, fooErrors.size());

//
String errorMessage = fooErrors.get(0);
assertEquals("Foo Range Message", errorMessage);

A bit of refactoring and name-brainstorming can lead to a single-line
abstraction (which might read even better in Hamcrest form):

assertSoleElementEquals("Foo Range Message", errors.get("foo"));

Our test is starting to trim down. We’re also starting to build a library of
reusable functions which will help us reduce the amount of code
application-wide.

PragPub April 2011 36

public void testMessageKey() {
HashMap<String, Object> params = new HashMap<String, Object>();
params.put("foo", "200");

//
HashMap<String, Object> extraContext = new HashMap<String, Object>();
extraContext.put(ActionContext.PARAMETERS, params);

//
ActionProxy proxy = actionProxyFactory.createActionProxy("",

MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);
ValueStack stack = ActionContext.getContext().getValueStack();
ActionContext.setContext(new ActionContext(stack.getContext()));
ActionContext.getContext().setLocale(Locale.US);
proxy.execute();
assertTrue(((ValidationAware) proxy.getAction()).hasFieldErrors());

//
Map<String, List<String>> errors =

((ValidationAware) proxy.getAction()).getFieldErrors();
assertSoleElementEquals("Foo Range Message", errors.get("foo"));

}

Irrelevant Information
In a well-abstracted test, every fact in the test is relevant to understanding the
test. Take care not to include arbitrary values in a way that suggests relevance.
In the statement:

params.put("foo", "200");

… the word “foo” is a standard metasyntactic variable indicating unimportance,
but what’s the meaning of the value 200? Is it an HTTP status code? You have
to spend time reading the rest of the test to see if 200 correlates with anything
else. If you suspect it doesn’t, you can always change the value and see if the
test still passes. You might be able to get away with passing the empty string
or null:

params.put("foo", "");

If null or empty values don’t work, you can use a meaningful constant name:

params.put("foo", ARBITRARY_NUMERIC_VALUE);

or even pass a value that imparts the arbitrary meaning:

params.put("foo", "bar");

The unfortunate intertwining of “essential” and “irrelevant” code in a test
requires the reader to do even more work to figure out what’s important.

In our case, it turns out that 200 is indeed relevant. More on that later—for
now we choose to leave the magic number in the code and revisit it when the
tests are easier to follow.

Bloated Construction
Our test dedicates its first four lines of code to a single relevant concept:
constructing an “extra context” containing our single key/value pair of foo/200.

HashMap<String, Object> params = new HashMap<String, Object>();
params.put("foo", "200");

//
HashMap<String, Object> extraContext = new HashMap<String, Object>();
extraContext.put(ActionContext.PARAMETERS, params);

PragPub April 2011 37

Elsewhere in the open source application containing testMessageKey, we found
a handful of four-line chunks that were exactly the same—duplication!

Understanding testMessageKey does not require one to know that extra context
is created by stuffing one map into another. You can introduce a single-line
call to a new factory method and hide this detail without losing any useful
information:

HashMap<String,Object> extraContext =
createExtraContextWithParameters("foo", "200");

Our test is now a few lines shorter still:

public void testMessageKey() {
HashMap<String,Object> extraContext =

createExtraContextWithParameters("foo", "200");
//

ActionProxy proxy = actionProxyFactory.createActionProxy("",
MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);

ValueStack stack = ActionContext.getContext().getValueStack();
ActionContext.setContext(new ActionContext(stack.getContext()));
ActionContext.getContext().setLocale(Locale.US);
proxy.execute();
assertTrue(((ValidationAware) proxy.getAction()).hasFieldErrors());

//
Map<String, List<String>> errors =

((ValidationAware) proxy.getAction()).getFieldErrors();
assertSoleElementEquals("Foo Range Message", errors.get("foo"));

}

Sometimes new test helper methods are useful not only for testing but for
production code as well! The “move method” refactoring can be used to relocate
methods from test to production code, and some search-and-replace can help
find all the places where the production code is simplified by the new method.

Duplication is a major drain on developer productivity for any application.
Eliminating the bloat of duplication improves your future development speed
in these ways:

• The improved abstraction level reduces comprehension time and thus
also the time to maintain the tests and application.

• Future changes to the steps required to construct the “extra context” can
be made in one place, not dozens or more.

• You can write new tests more rapidly, introducing a single line instead
of having to find-copy-paste-and-alter another chunk of four lines.

Irrelevant Details in Test
Specifying the Locale for the ActionContext appears to have nothing to do with
the rest of the test. We can bury it in a construction method (createActionProxy
in the example here), killing another bird with this same stone—it also removes
some of the clutter required for ActionProxy construction.

PragPub April 2011 38

public void testMessageKey() {
HashMap<String,Object> extraContext =

createExtraContextWithParameters("foo", "200");
//

ActionProxy proxy = createActionProxy(
MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);

proxy.execute();
assertTrue(((ValidationAware) proxy.getAction()).hasFieldErrors());

//
Map<String, List<String>> errors =

((ValidationAware) proxy.getAction()).getFieldErrors();
assertSoleElementEquals("Foo Range Message", errors.get("foo"));

}

As you can see, well-named extracted methods are a major key to cleaning up
your tests. And once again, there’s some chance that you can find and eliminate
similar code chunks in other tests nearby, or even in the SUT itself.

Multiple Assertions
You can make the case for multiple assertions in one test method if a single
behavior has multiple post-conditions that must hold true. However, additional
assertions make it harder to comprehend the test at a glance, and decrease the
amount of useful information that the test names can impart on their own.
Multiple assertions can also be a code smell, suggesting violation of cohesion
in the SUT.

You can consider separating each of these post-conditions into a separate test.
There is a minor downside: readers must now poke around to find all conditions
that hold true for a particular behavior, and hope that the developer has named
and organized these consistently. But you get better fault isolation (single
reason to fail), as well as an opportunity to improve test names, if you split the
tests:

public void testActionValidationReportsFieldErrors() {
HashMap<String,Object> extraContext =

createExtraContextWithParameters("foo", "200");
//

ActionProxy proxy = createActionProxy(
MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);

proxy.execute();
assertTrue(((ValidationAware) proxy.getAction()).hasFieldErrors());

}
//

public void testActionValidationAllowsMessageRetrievalByKey() {
HashMap<String,Object> extraContext =

createExtraContextWithParameters("foo", "200");
//

ActionProxy proxy = createActionProxy(
MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);

proxy.execute();
//

// we could also eliminate this line of ugliness, replacing it
// with a call to a local method named getFieldErrors. See the
// next code section for the result.
Map<String, List<String>> errors =

((ValidationAware) proxy.getAction()).getFieldErrors();
assertSoleElementEquals("Foo Range Message", errors.get("foo"));

}

PragPub April 2011 39

Test names are exceedingly important abstractions: they amplify the essential
behaviors captured by a test case, and eliminate the contextual irrelevancy of
how those behaviors are executed and verified.

Misleading Organization
The resulting two tests are clear candidates for the idiomatic organization of
AAA:

public void testActionValidationReportsFieldErrors() {
HashMap<String,Object> extraContext =

createExtraContextWithParameters("foo", "200");
ActionProxy proxy = createActionProxy(

MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);
//

proxy.execute();
//

assertTrue(((ValidationAware) proxy.getAction()).hasFieldErrors());
}

//
public void testActionValidationAllowsMessageRetrievalByKey() {
HashMap<String,Object> extraContext =

createExtraContextWithParameters("foo", "200");
ActionProxy proxy = createActionProxy(

MockConfigurationProvider.VALIDATION_ACTION_NAME, extraContext);
//

proxy.execute();
//

// see previous code excerpt for how we got this single-line assertion
assertSoleElementEquals("Foo Range Message", getFieldErrors().get("foo"));

}

Since both tests contain common setup, you can consider creating a separate
fixture around action validation. An isolated fixture would allow you to move
the common setup into a common initialization method (setUp or @Before).

And there’s still room for a few additional tweaks. How do you know when
you’re done with a test? One great way is to call over a neutral party and ask
them to paraphrase the test. If they’re unable to clearly do so, you have work
to do!

Implicit Meaning
Now that these tests are split apart and easy to read, it’s pretty obvious that
we’re missing something: It’s not at all clear why the key/value pair foo/200
generates a validation error! Unraveling this mystery requires you to read
between the lines (aka blow time by digging around through other code or
running a series of experiments).

The constant MockConfigurationProvider.VALIDATION_ACTION_NAME makes it
obvious that a test double is in play somewhere, no doubt the arbitrator of
whether or not validation passes. Unfortunately, the developer buried relevant
test context in this test double. To fix the flaw, make the test double
construction more explicit. Here’s a stab at a clearer test:

PragPub April 2011 40

static String INVALID_FOO_VALUE = "200";
//

public void testActionValidationReportsFieldErrors() {
ActionProxy proxy = createActionProxy(

createExtraContextWithParameters("foo", "200"));
proxy.injectValidator(

createStubValidatorThatThrowsOnValue("200"));
//

proxy.execute();
//

assertTrue(((ValidationAware) proxy.getAction()).hasFieldErrors());
}

//
private Validator createStubValidatorThatThrowsOnValue(String value) {
Validator validator = mock(Validator.class);
when(validator.validate(value).thenThrow(new ValidationException());
return validator;

}

Your tests should be short and sweet, but it is more important to be clear than
to be brief. Don’t let your passion for shortening tests push you to bury relevant
meaning!

Conclusion
Tests are documentation, or at least can be written as descriptive documents.
Use the techniques outlined in this article to sniff out problems and improve
tests by increasing their level of abstraction. Your coworkers will thank you,
and the deciphering/debugging time you save may be your own.

About Jeff
Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash [U4] with Tim, he’s written another couple books, Agile Java and Essential Java
Style, contributed to Uncle Bob’s Clean Code, and written over 90 articles on software
development. Jeff runs the consulting and training company Langr Software Solutions from
Colorado Springs.

About Tim
Tim Ottinger is the other author of Agile in a Flash [U5], another contributor to Clean Code, a
30-year (plus) software developer, agile coach, trainer, consultant, incessant blogger, and
incorrigible punster. He writes code. He likes it.

Send the authors your feedback [U6] or discuss the article in the magazine forum [U7].

External resources referenced in this article:

[U1] http://www.pragprog.com/magazines/2011-02/abstraction

[U2] http://agileinaflash.blogspot.com/2009/03/arrange-act-assert.html

[U3] http://agileinaflash.blogspot.com/2009/02/simple-design.html

[U4] http://www.pragprog.com/refer/pragpub22/titles/olag/Agile-in-a-flash

[U5] http://www.pragprog.com/refer/pragpub22/titles/olag/Agile-in-a-flash

[U6] mailto:michael@pragprog.com?subject=Agile-cards

[U7] http://forums.pragprog.com/forums/134

PragPub April 2011 41

http://www.pragprog.com/refer/pragpub22/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub22/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=Agile-cards
http://forums.pragprog.com/forums/134
http://www.pragprog.com/magazines/2011-02/abstraction
http://agileinaflash.blogspot.com/2009/03/arrange-act-assert.html
http://agileinaflash.blogspot.com/2009/02/simple-design.html
http://www.pragprog.com/refer/pragpub22/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub22/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=Agile-cards
http://forums.pragprog.com/forums/134

