
ThePragmatic
Bookshelf

PragPub
The First Iteration

Issue #21
March 2011

Testing…
In this issue we tackle testing,
Turing, tweets, and trust—not to
mention punk programmers,
volatile software, and train
wrecks.

Testing…
In this issue we tackle testing,
Turing, tweets, and trust—not to
mention punk programmers,
volatile software, and train
wrecks.

IN THIS ISSUE

* Punk Rock Languages
* Testing for Web Services
* Testing for the Cloud
* Software Volatility
* When Did That Happen?

PragPub • March 2011

Contents

FEATURES

Punk Rock Languages ... 11
by Chris Adamson

In an era of virtual machines and managed environments, C is the original Punk Rock Language.

Testing for Web Services .. 19
by Noel Rappin

Just because you are using an external web API for your site doesn’t mean that BDD principles need to go out the window.

Testing for the Cloud ... 26
by Adam Goucher

The three big differences cloud computing brings with it are really just modern twists on old practices.

Software Volatility .. 29
by Tim Ottinger, Jeff Langr

The fourth in this four-part series of Big Ideas in software development.

When Did That Happen? ... 34
by Dan Wohlbruck

How a great mathematician solved a classic problem and laid the theoretical foundation for modern computers.

— i —

DEPARTMENTS

Up Front ... 1
by Michael Swaine

A Polemic on Programming and Punk Rock

Choice Bits .. 2
A few selected sips from the Twitter stream.

Way of the Agile Warrior ... 6
by Jonathan Rasmusson

If companies simply trusted their people, a lot of the waste on software projects would go away.

The Quiz ... 37
by Michael Swaine

A monthly diversion at least peripherally related to programming.

Calendar ... 39
After a slow-ish winter, things are really heating up this spring.

Shady Illuminations .. 48
by John Shade

John considers why Microsoft jumped onto Nokia’s burning platform.

Except where otherwise indicated, entire contents copyright © 2011 The Pragmatic Programmers.

Feel free to distribute this magazine (in whole, and for free) to anyone you want. However, you may
not sell this magazine or its content, nor extract and use more than a paragraph of content in some
other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764. The editor is Michael Swaine
(michael@pragprog.com). Visit us at http://pragprog.com for the lowdown on our books, screencasts,
training, forums, and more.

ISSN: 1948-3562

— ii —

http://pragprog.com

Up Front
Punk Rock Languages

by Michael Swaine

This month Chris Adamson delivers a sprited polemic on what he calls punk
rock languages. You may agree or disagree with his arguments, but you can’t
deny that they cut to the heart of how we do our work as programmers. If you
find the subject interesting, you can follow further punk rock programming
thoughts at @punkrockcode [U1].

Like most software disciplines, testing gets tricky at the boundaries. It’s great
when the code is all under your control, but in the modern programming
environment of Web services and the cloud, you have to deal with some extra
issues. In this issue, Noel Rappin takes on testing for Web services and Adam
Goucher looks at what it takes to test for the cloud.

Tim Ottinger and Jeff Langr are back with another in their series on big ideas
in software, this time looking at software volatility. Theorizing that the more
often a file changes, the more likely it is to result in a code defect, they consider
how to reduce and deal with software volatility.

Jonathan Rasmusson’s “Way of the Agile Warrior” deals with a fundamental
issue this month: trust, how to earn it, and the freedom and power it buys you.

Dan Wohlbruck’s back with another history article this month, the Quiz
returns with a tricky puzzle about relationships, and John Shade ponders train
wrecks and burning platforms.

External resources referenced in this article:

[U1] http://twitter.com/#!/punkrockcode

PragPub March 2011 1

http://twitter.com/#!/punkrockcode
http://twitter.com/#!/punkrockcode

Software Volatility
Do Most Changes to Your Code Base
Occur in Just a Few Files?

by Tim Ottinger, Jeff Langr

In the fourth in their four-part series of Big Ideas in
software development, Tim and Jeff tackle software
volatility.

What is Volatility?
As the final of our “big ideas in software development,” we look at volatility.
We provide a very simple definition of volatility for purposes of this discussion:
Volatility is a measure of how often a file actually changes—never mind the
extent or reason for the change. Using this definition, we theorize that volatility
directly correlates to the risk of making a change: the more volatile a file is,
the more likely it is that changes to that file will result in a code defect.

Measuring Volatility
Michael Feathers recently posted a graph [U1] showing that commits across a
code base are not evenly distributed. Some files change frequently, even
continually, while the majority seem never to be touched at all. His blog report
of these findings was widely tweeted and referenced.

Noticing the same trend, Tim presented the idea of a Heat Map [U2] last year,
in a blog post in which he counted Jira tickets associated with source files in
the source control system for a sizable production web application. Some
changes were due to feature enhancements, whereas others were due to bug
fixes and others were merely side-effects of a refactoring (usually Rename or
Move Method).

In Tim’s analysis, a small number of files were shown to be involved in the
vast majority of changes made in the system. When the five most volatile files
were identified, they were shown to be poorly covered with tests, if at all, and
less than optimally structured. (Why does this not surprise us?) Developers
were hesitant to touch these files because of their high implementation
complexity, yet they were still visited frequently.

Michael Feathers suggested that counting commits was a reasonable
approximation for the volatility of a code module, and we agree. Here are a
few projects you can check for yourselves:

1. In the Gwibber project, the most changed files are client with 302, gwui
with 149, and dispatcher with 95 commits. All 247 other files have less
than 70 updates and the vast majority of them have less than 30.

2. In the Mongo project, most files have fewer than 100 modifications, but
the most-modified file has 663 (caveat: an Scons file). The top nine
have from over 300 to over 500 changes. This is another data point
suggesting that changes clump, rather than spreading over the code base.

PragPub March 2011 29

http://michaelfeathers.typepad.com/michael_feathers_blog/2011/01/measuring-the-closure-of-code.html
http://agileotter.blogspot.com/2010/10/heatmap-new-hotness.html

3. Source files in the rails project tend to have fewer than 150 changes per
file, the vast majority having fewer than 20 changes. However, the top
five have 953, 568, 481, 309, and 307 changes respectively.

Files can change frequently because:

1. they are “god classes” (poor cohesion),

2. they have poor dependency structure (poor coupling),

3. they depend on many implementation details (poor abstraction), or

4. the code is poorly written and has many flaws.

Sometimes all of the above are true!

Circumstances do exist where heavy change is not due to poor design—files
can contain key abstractions in the solution domain or the problem domain.
New features in a banking system might touch upon Account or User. In a
retail app, it might be Sale or Receipt or Product.

No matter the reason, we can confirm that certain source files change much
more often than others, and then we can form strategies to deal constructively
with code that shows high volatility.

Risk of Breakage
Programming is more an art of continual tailoring than invention. Systems
gather changes over time: functional alterations, adjustments to user experience,
performance and scalability changes, upgrades to the supporting platform or
platforms, integration with other systems, and adjustments or corrections to
internals (both functional and structural). It has been said that a system spends
80% of its life in maintenance. A successful system should spend far more years
in extension and improvement than it did in original authoring.

A sad fact of software development is that every change to existing code has
a non-zero chance of causing breakage. Some changes are simple errors in
function name or type, some are simple miscalculations, some are naive changes
that damage scalability or performance, and some are subtle effects that only
show up when seemingly unrelated parts of the code base fail. Many defects
are coded due to a simple misunderstanding of how the code currently operates.

In our previous article on coupling, we mentioned that errors tend to fan out
along dependency lines, including implicit dependencies. In our articles on
cohesion and abstraction, we mentioned how duplication makes maintenance
a “sometime thing,” since a programmer is unlikely to find all the occurrences
of a duplicated passage of code and correct them all. A bug may return several
times—there exists potentially one “emergency bug fix” for every point of
duplication in the code base.

In general, the sooner a program error is detected, the less damage it does to
the project’s schedule and to the product’s reputation. If the programmer
realizes an error while typing, he may backspace and rewrite the code
immediately with no ill effect at all. If the error escapes the programmer, it
may be spotted by another programmer in the same development cycle or by
a QA team member.

PragPub March 2011 30

An otherwise undetected error escapes “into the wild,” the real world where
customers call technical support and programmers are pulled from feature work
to diagnose and fix the code. The defect may bring servers to their knees,
denying users access. It may cause data to be corrupt, requiring painstaking
data repair. It may have consequences well beyond those reported by the users.
Of course, the bug could also be cosmetic, or a trivial problem with an easy
work-around.

Simple odds suggest that the likelihood of breakage is greater in more volatile
modules. We also have observed that messy, ill-structured, badly written
modules are easy to misunderstand and hard to repair. Where there is
duplication, a lack of abstraction, and needless couplings, the breakage will
be most likely to fan out across the code base.

To re-emphasize: Where we have messy, volatile code we are at the greatest risk of
failure. What are we going to do about it?

The Review Alternative
“Given enough eyeballs,” says Linus’ Law [U3], “all bugs are shallow.” Various
forms of review—inspection, code walk-through, hierarchical review, and pair
programming—exist to provide structure for the eyeballs.

Many companies and open source projects use hierarchical review. Someone
submits a patch, which is reviewed at the first tier. If the patch has no obvious
defect it is passed up to the next layer, otherwise it is returned or rejected. This
is an effective strategy, but many companies do not or cannot adopt the strategy
because it requires layers of skilled programmers to do little but monitor
changes. It can be hard to keep up with those writing the code. The
reviewer/acceptors need to be among the most skilled developers and those
most familiar with the code base, and while they are spending time reviewing,
their skills are not being put to use producing product.

Other companies, especially those employing agile techniques, perform constant
review via pair programming. They switch partners frequently, always having
two heads involved in the decision-making, and having multiple sets of eyes
on the code. All of the programmers are actively involved in code-writing
most of the time.

Our most volatile code demands the most eyeballs. Even if your team has reviews
for no other code and won’t consider pair programming, consider either when entering
into its risky, volatile areas.

The Testing Alternative
Breakage often occurs somewhere else in the code base, far from a change.
“Never thought that would break!”

It is foolhardy to release a product on faith alone. Most companies supplement
faith with a QA department full of people knowledgeable about the product
and skilled at operating it. They may have little knowledge of the code that
comprises the product, but are brilliant at sniffing out defects and their causes.
These QA folks fulfill the innately human needs in testing—testing scenarios
that require reasoning about the software, predicting usage errors, noting

PragPub March 2011 31

http://en.wikipedia.org/wiki/Linus%27_Law

inconsistencies in data handling or presentation, and so on. Such exploratory
testing is labor-intensive but invaluable.

On the other hand, often a testing department involves a small army of testers
who run explicit test scripts more or less by rote. They repeat the same steps
month after month and release after release. Sometimes they find errors, but
ideally and usually they run all of their tests without seeing any errors. Their
job is to provide assurance that important procedures still work just as they
always did. Maintaining and running manual regression scripts is expensive
and slow, but it is the last chance to spot defects before releasing code to
customers.

If an error was detected immediately after it was created, it would be corrected
without delay. It makes sense that developers test as they work, but if a
developer manually ran all of the test scripts after every line of code,
productivity would be dismal. We might see a feature developed in the course
of a decade.

An undetected error in a very volatile source file might have many layers of
additional change heaped on it by the time it reaches release, so early detection
is key. Errors indirectly related to a change in volatile code must have an
automated test produced to reproduce it.

In order to develop code quickly and well, our most volatile code requires the
most extensive automated testing. The tests need to run frequently and quickly
so that developers can run them many times per hour. This makes solving the
problem easier, but also protects against future breakage being undetected or
detected late.

Agile teams use extensive testing at the requirement level (acceptance tests),
at the level of individual effects of functions or classes (unit testing), and often
at the UI level as well (though UI tests tend to be too slow to be run by human
beings and are offloaded to a continual testing environment). Many agile teams
tackle test-first programming (aka test-driven development, or TDD) as well,
to both build up a significant body of tests and guide an improved design.

On the surface, it may appear that the investment in automating such test
scripts is too high, since they seem to report only rarely on defects in the system.
In reality, the tests prevent gobs of bugs—since these tests are written first,
they gate the defects from ever making their way past the programmer and
into the code base (in the case of TDD) or past the QA team and into the
release.

Automated tests protect you against the exploding minefield that is volatile code.

The Wrap-up
This trip through Cohesion, Coupling, Abstraction, and Volatility—the four
most important ideas in software development—brings us to the premise of
the agile development process. Software development should be fluid and
productive, but problems that develop in the code base can slow releases and
frustrate the authoring of new features. For a project to be successful, it must
have constant attention to quality, especially in the code that is touched most
often.

PragPub March 2011 32

Hardcore agile teams use constant testing, constant teamwork, continual
integration, and constant refactoring to manage the code base. The testing
practices actively shorten the period between defect creation and detection.
The refactoring practices improve cohesion, reduce coupling, and add
abstraction in order to keep the code workable. Keeping the code workable
leads to more productive teams and higher quality month over month.

Even if your team does not wish to identify as an agile team, we suggest that
it might be prudent to at least adopt these practices when it comes to the most
volatile (and therefore most risky) code in your code base.

If you are working in an agile team, the proof of your growing agility is in
examining the quality and test coverage of your most volatile code. If it is
being touched frequently, it should be continually improving in structure,
readability, and code coverage. If it is not improving, then you have some
technical practices to work on, and some debt to pay down.

About Jeff
Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash [U4] with Tim, he’s written another couple books, Agile Java and Essential Java
Style, contributed to Uncle Bob’s Clean Code, and written over 90 articles on software
development. Jeff runs the consulting and training company Langr Software Solutions from
Colorado Springs.

About Tim
Tim Ottinger is the other author of Agile in a Flash [U5], another contributor to Clean Code, a
30-year (plus) software developer, agile coach, trainer, consultant, incessant blogger, and
incorrigible punster. He writes code. He likes it.

Send the authors your feedback [U6] or discuss the article in the magazine forum [U7].

External resources referenced in this article:

[U1] http://michaelfeathers.typepad.com/michael_feathers_blog/2011/01/measuring-the-closure-of-code.html

[U2] http://agileotter.blogspot.com/2010/10/heatmap-new-hotness.html

[U3] http://en.wikipedia.org/wiki/Linus%27_Law

[U4] http://www.pragprog.com/refer/pragpub21/titles/olag/Agile-in-a-flash

[U5] http://www.pragprog.com/refer/pragpub21/titles/olag/Agile-in-a-flash

[U6] mailto:michael@pragprog.com?subject=Agile-cards

[U7] http://forums.pragprog.com/forums/134

PragPub March 2011 33

http://www.pragprog.com/refer/pragpub21/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub21/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=Agile-cards
http://forums.pragprog.com/forums/134
http://michaelfeathers.typepad.com/michael_feathers_blog/2011/01/measuring-the-closure-of-code.html
http://agileotter.blogspot.com/2010/10/heatmap-new-hotness.html
http://en.wikipedia.org/wiki/Linus%27_Law
http://www.pragprog.com/refer/pragpub21/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub21/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=Agile-cards
http://forums.pragprog.com/forums/134

