
ThePragmatic
Bookshelf

PragPub
The First Iteration

Issue #19
January 2011

IN THIS ISSUE

* Grokking Pattern Matching and List
Comprehensions

* Everyday JRuby
* Code Coupling
* Rediscovering QA
* When Did That Happen?

PragPub • January 2011

Contents

FEATURES

Grokking Pattern Matching and List Comprehensions 10
by Bruce Tate

Bruce explores two powerful features of modern programming languages that can make your code more beautiful and
you more productive.

Everyday JRuby ... 16
by Ian Dees

Wherein Ian creates a simple game and then shows you several ways to deploy it.

Code Coupling .. 24
by Tim Ottinger, Jeff Langr

Those big software design concepts like coupling, cohesion, abstraction, and volatility have real practical value. In this
article, Tim and Jeff talk about what coupling is, why it’s necessary, and how you can reduce it to just that necessary
amount.

Rediscovering QA ... 29
by Chris McMahon

Software Quality Assurance is more than testing. The breadth of knowledge necessary for really good QA work are
surprisingly broad.

When Did That Happen? ... 32
by Dan Wohlbruck

Dan continues his series on the history of technology with a look at the index register.

— i —

Up Front
We Friend Your Curiosity

by Michael Swaine

What does it mean that this year began with Facebook surpassing Google in
hits? So large a fact, distilled from so many individual human choices, must
mean something about what it is to be human in the 21st century. But what?

Does it mean that we’re more friendly than curious?

If so, that might be a good thing, but here at the start of 2011 and of this issue
of PragPub, I’m banking on your curiosity.

If you have a healthy curiosity about programming languages, you’ll enjoy
Bruce Tate’s exploration of language features that can make your individual
coding style more powerful and artful.

If you’re curious about how you can get a better view of the big picture in your
development work, seeing it whole and from the user’s perspective, you’ll
appreciate Chris McMahon’s thoughts on software quality assurance, a
discipline that doesn’t always get enough respect or attention.

Jeff Langr and Tim Ottinger will satisfy your curiosity about one particular
aspect of agile development, Ian Dees’ series on everyday JRuby will enlighten
you about methods for sharing your code, Dan Wohlbruck will satisfy your
history itch with a shamelessly nerdy retrospective on the index register. Andy
Hunt will tell you Why Johnny Can’t Be Agile, and John Shade will share his
take on the phenomenon of wikileaks.

So that’s what’s in this issue. In case you were curious.

PragPub January 2011 1

Code Coupling
Reducing Dependency in Your Code

by Tim Ottinger, Jeff Langr

When it comes to couplings, there is strength in
weakness.

Last month we listed the four biggest ideas in software: cohesion, coupling,
abstraction, and volatility. Vowing to tackle one at a time, we focused on how
lack of cohesion creates challenges in software. This month we continue
through the idea list, moving on to the ever-present alliterative pair-partner
of cohesion, coupling.

We learned that cohesion is to be maximized, so that proximity follows
dependency. Where coupling is concerned, our rule is that dependency should
be minimized. We’ll tell you why and how.

Definition
When we talk about coupling in this article, we are referring to “attachments”
required due to the dependencies between modules in an object-oriented (OO)
system. A module can be a class or an aggregation of classes (a package). The
term coupling can refer to other dependencies, such as those between methods,
but we’re not interested in those here.

A dependency exists when code in one class refers to another class—via any
of several possible mechanisms:

• a field

• an argument

• constructed within a function

• inheritance or mix-in

• shared knowledge

When you cannot compile or operate module A without the immediate
presence of module B, module A is dependent upon module B. Dependency
is coupling. More importantly, if a change in module B could cause breakage
in module A, A is coupled to B.

Coupling among software components is reasonable and necessary. If a part
(class, module, library) of a system we’re writing has no connection to any
other part, we typically call it “dead code” and delete it. All useful code has
some coupling.

Simple Dependency
We need a Branch class to represent the various physical buildings in which
library patrons can find books or other materials. We need a Material class to
represent an item that patrons wish to borrow. A Branch object must contain
a collection of Material objects. (Let’s not confuse this with database design,

PragPub January 2011 24

in which case a Material might have a back reference to a Branch table.) Figure
1 shows how we diagram such dependencies using UML.

Without Material, Branch has no reason to live; Branch is dependent upon
Material. Any changes to the definition of Material might impact Branch. If you
change the Material class, you’ll need to re-test both the Material and Branch
classes before releasing the change. On the other hand, changes to Branch are
not important or interesting to Material. We can say that effects flow against
the direction of the dependency arrows. The problem with couplings is not their
existence or even necessarily their number, but their potential to cause dependent
code to break.

Transitive Dependency
More trouble comes when there are many layers of dependency (see Figure 2).

Dependence is transitive. To understand the full impact of a dependency,
follow the chain backward. For example, a small code change to the details of
how fees are calculated in FeeCalculator has the potential to impact
LibraryController! You’ve no doubt encountered this effect: you make a change
in one corner of the system and it breaks code in a far, far distant corner. You
might not even spot such a defect, particularly if you don’t do extensive
regression testing with each release. That of course means your unfortunate
customer will likely be the one who spots the defect.

Unit testing, one of our favorite things to do (and do first of course, i.e. using
TDD), also becomes far more difficult with deep dependency chains.

If you want to test the FeeCalculator class, you simply create a new instance:

var sut = new FeeCalculator(baseRate);

Since it has no dependencies, you’re ready to call methods on it for verification
purposes.

Tests for Material, on the other hand, will at some point require you to also
construct an instance of FeeBasis, which requires an instance of a FeeCalculator.
Tests of Branch will require Materials, and so on. By the time you arrive at the
most dependent class, that insecure fellow who cannot live without a host of
other objects, you may find yourself writing dozens of lines of code to create
and populate associated objects.

PragPub January 2011 25

Structural Dependency
Staying with the same example, if classes that use the LibraryController need
to access the FeeCalculator by traversing Checkout, Branch, Material, and FeeBasis,
then we have a structural dependency. If we ever collapse or extend the
structure of that part of the application, code in all the places that are aware
of the structure of the application will likely fail in one way or another.
Hopefully it will be at compile time.

Implicit Dependencies
A diligent programmer can easily trace explicit dependencies between code
modules as in the chain from LibraryController to FeeCalculator above. Implicit
dependencies are rather trickier. When different parts of the program share
knowledge, in violation of what we discussed last month about coherence,
they will exhibit an implicit dependency.

Say that your auditor wants you to report the specific fee calculation method
by name. Sadly, when the fee is calculated, the algorithm name is not recorded.
You could change the fee transaction to include the algorithm name, but that
means a change to a core business object and also to the database. Luckily,
you remember that only the large payment calculator can levy fees as large as
$23.00. You can infer the calculation method!

if Fee.amount > 23:
calc_method_name = “large payment”

It works! You can now produce your report without touching/damaging existing
code in the rest of the system! The problem is that now you have an implicit
dependency on the limits of the large payment calculation. Maybe it works
for now, maybe it will work for months or years, but it is not guaranteed always
to work. If the calculation ever changes, this code will be quite broken, even
though the fee report does not explicitly depend on the large payment fee
calculator.

When details escape the class where they “belong” (see our previous article,
“Cohesive Software Design”), we refer to them as leaky abstractions.

Fee.amount is a primitive integer in the example above. The authors implicitly
assumed a currency. If they are our countrymen, it’s a sure bet they’re thinking
US Dollars. And that might be all right, if there is a business rule in the system
that all amounts are given as integer dollars, but it is a shared assumption.

Couplings are particularly troubling when they mix concerns that should be
independent. If a calculation in the bowels of the system is written to pop up
a modal dialog box, it couples calculation to user interaction. So much for
calculating values in batch mode!

All implicit couplings seem convenient when first introduced, but later become
reasons that the code cannot be easily diagnosed, repaired, or extended. In a
small web app we’ve been working on, we spotted a shared bit of knowledge
about file locations and URL construction. This information appeared in
utilities, UI, and in the core class model of the app. Once we realized that we
had a shared secret across modules, we realized we’d lost cohesion and had
created implicit couplings that were going to bite us. Some redesign was in
order.

PragPub January 2011 26

How often do we hear developers saying that they would love to make an
improvement to the code structure, but that it would take too long, cost too
much, and risk too much? Typically, the programmer sent to resolve the
problem must write the code that the original author avoided. Unfairly, the
original author may be initially credited with quick turnaround, when in reality
he did an incomplete job that his colleagues must finish for him.

Solutions
We need a way to maintain necessary couplings, but reduce the strength of
the couplings so that a change in a depended-upon class does not cause rippling
changes or failures throughout the system.

Prefer explicit couplings to implicit couplings. Increase cohesion so that one
class becomes the single point of truth for a given fact. By doing so, we reduce
the ability of implicit couplings to distribute errors throughout the code base.
This is perhaps easier to say than do, but it goes a long way toward preventing
“step back” errors.

If we can reduce our use of a class to a smaller set of method signatures, then
we are depending on an interface rather than on the full implementation of
the class. This is a weaker dependency that may replace couplings to a number
of concrete (possibly derived) classes. This is the concept behind many
“inversion of control” frameworks. The dependency on an interface also makes
it a snap to replace a production concrete implementation with a stub, greatly
simplifying the effort required to code unit tests.

It’s better yet to depend on fundamental, unchanging interfaces on objects.
For instance, if we can rework the code to treat the FeeCalculator as a black
box into which we pass a rental instance and receive a fee object, we can use
the facts the calculator provides to us without depending on how it does its
work. This weaker dependency provides us with a kind of “dependency firewall.”
Abstraction (to be covered later) allows us to tolerate change.

Structural couplings are difficult to deal with, because navigation is frequently
necessary and it has to go somewhere. The most common ways to deal with
this are the Law of Demeter [U1] or the use of special classes (with names
including words like Gateway or Repository) that will do navigation for us
with methods like Repository.FeeCalculatorFor(Material). We trade a dependency
on the broader structure of the system for dependency on a single class that
hides those dependencies for us.

It is common to introduce additional mechanisms (interfaces, abstract base
classes, facades, repositories, navigation functions, etc.) to help us manage
troublesome couplings. It adds some complexity to our applications to have
these extra parts, but the additional mechanisms are trade-offs we willingly
make to keep the system from degrading due to unnecessary strong couplings.

Summary
Coupling is necessary, it makes our code useful, but it can also make it fragile.
By seeking weaker couplings, we can reduce code breakage in our systems. As
a result, we’ll spend less time tracking down weird problems and more time
writing and polishing new features.

PragPub January 2011 27

http://pragprog.com/refer/pragpub19/articles/tell-dont-ask

About Jeff
Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash [U2] with Tim, he’s written another couple books, Agile Java and Essential Java
Style, contributed to Uncle Bob’s Clean Code, and written 90+ articles on software development.
Jeff runs Langr Software Solutions from Colorado Springs, where he also pair-programs full-time
as an employee of GeoLearning.

About Tim
Tim Ottinger has over 30 years of software development experience coaching, training, leading,
and sometimes even managing programmers. In addition to Agile in a Flash [U3], he is also a
contributing author to Clean Code. He writes code. He likes it.

Send the authors your feedback [U4] or discuss the article in the magazine forum [U5].

External resources referenced in this article:

[U1] http://pragprog.com/refer/pragpub19/articles/tell-dont-ask

[U2] http://www.pragprog.com/refer/pragpub19/titles/olag/Agile-in-a-flash

[U3] http://www.pragprog.com/refer/pragpub19/titles/olag/Agile-in-a-flash

[U4] mailto:michael@pragprog.com?subject=Agile-cards

[U5] http://forums.pragprog.com/forums/134

PragPub January 2011 28

http://www.pragprog.com/refer/pragpub19/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub19/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=Agile-cards
http://forums.pragprog.com/forums/134
http://pragprog.com/refer/pragpub19/articles/tell-dont-ask
http://www.pragprog.com/refer/pragpub19/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub19/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=Agile-cards
http://forums.pragprog.com/forums/134

