
#13

TM

by Jeff Langr

Until a team sees these benefits first-hand, however, the prac-
tice of TDD remains at risk. Various factors can trigger a
gradual degradation away from TDD, to the point where
developers abandon the practice and existing tests are stale
and useless. Some of the main factors include the departure
of skilled and influential team members, a shift in manage-
ment focus, a particularly steep legacy software hurdle to
overcome, and a slow build-and-test cycle. Further, the ap-
proach to TDD can unfortunately be a factor. A team without
a solid grounding in TDD can quickly generate a poor code-
base that makes the practice itself seem the culprit. Perhaps
the most significant challenge to TDD is impatience. Turning
around an existing, problematic source base for the better is
not something achieved overnight, or even in a few weeks.
Also, taking a team filled with TDD novices to a proficient
level can take months. Teams successful with TDD have the
following characteristics:

dependable management support
a team with solid peer support for the practice
a review process
a proper educational foundation
either coaching support or sufficient prior experience with
TDD
developers who have approached TDD as a discipline
continually evolving standards
an ardent approach to refactoring
high attentiveness to design and code quality
high-quality tests that double as documentation
a defined continuous integration process
the use of coverage and other metrics as guidelines and
education tools, not goals
a comparable attentiveness to other forms of tests
a unit test suite that runs rapidly

Management support
TDD is purely a developer practice [1], employed only by
those crafting the code product. It produces, as a side effect, a
suite of unit tests, each one verifying a small piece of behavior
in the system. These tests are wholly developed, reviewed, and
maintained by developers themselves. For many non-techni-
cal managers, the technical nature of TDD suggests a loss of
control and requires a leap of faith: How do I ensure the de-
velopers practice TDD? Are the tests providing an appropri-
ate return on investment? How do I verify that the developers
are practicing it properly?

Customer-facing metrics can potentially answer the last two
questions: Is the defect rate low? Is the rate of development
remaining low over time, or is it increasing? Negative answers
could indicate that TDD is not being properly applied, but it
could also indicate other factors.

Management should insist that the team perform a root
cause analysis for each defect uncovered. Was the cause a
specification misunderstanding? Incomplete analysis? Process
issue? Completely unexpected event? Configuration issue? Or
just bad code? The key question regarding TDD practice: Is
it reasonable to expect that the defect would have been pre-
vented by a unit test introduced in a test-driven manner? If
so, the team must learn from the oversight. Coaching or re-
education may be required. However, managers must avoid
chastising the team, and intervene only if such preventable
defects become a continuing problem. Managers must show
patience and fully support the team during the learning curve.
They must provide training and coaching as needed, and can
also help by promoting mechanisms for peer support and
education. It is key for managers to remember that they are
supporting a transition to a new technique that completely
changes how developers approach building software. It’s also
important to understand the goal of TDD being a built-in
piece of how programmers code, and that it will become an
inseparable part of building code. Management should expect

An article on Test-driven Design

Succeeding With and
Sustaining TDD
The rewards of TDD can be significant: dramatically reduced size, tests that improve developer understanding of
system behaviors, more decoupled/cohesive designs, cleaner code, and the ability to change the system safely
and rapidly to meet the demands of an iterative/incremental development process. Additionally, the number of
defects can be orders of magnitude smaller than on a typical, comparably sized product. Individuals on teams
that have achieved these results become test-infected, and will not willingly give up the practice.

that developers increase in speed after becoming proficient at
TDD. James Grenning of Renaissance Software: “People tell
me ‘TDD is too slow, show me the fast way,’ to which I say,
‘Get good at being careful, and then you can go fast.’”

Peer support
An individual practicing TDD alone within a team cannot suc-
ceed, nor can two or three members of a larger team. An invest-
ment in unit testing of any form requires that all of the team
members support the tests that are created. The use of TDD is
a standard that must be agreed upon by the entire team.

Quorum on a team is needed: Over time, a minority of
developers practicing TDD will eventually lose out if the re-
mainder of the team is apathetic or hostile toward TDD. Even
once quorum is attained, a few dissenting voices can signifi-
cantly diminish the potential for success. A team that does not
fully support TDD is a team that will continue to lose time
with debate and rework. Continued dissension will eventually
dissuade team members from practicing TDD.

Members of a true team support each other in their endeav-
ors. Milo Todorovich, independent consultant, has instilled
in his team a protocol for initiating a new pair session. He
indicates that he expects and asks his teammates to “call him
out” when he’s straying from protocol.

Initially, management must support a fluid organization,
in turn, allowing people to move to teams that work in the
same manner that they prefer. Over time, however, as TDD
becomes the predominant culture, it can become a key differ-
entiator in hiring practices.

Review
Code produced without the review of third parties represents
significant risk. As witnessed in the vast majority of code bases,
open source or proprietary, the reality is that the majority of
code produced is low quality, containing numerous defects. It
is unfathomable, yet typical practice, that most product cre-
ated by software professionals is not properly reviewed be-
fore it is shipped. The software industry has the uncommon
characteristic that developers must continually build upon
existing product; this environment further compounds the
problem, as unreviewed, poor quality code generates much
higher-than-necessary maintenance costs.

Not only must the team review production code, they must
review the tests themselves, to support another key benefit.
Tests produced by developers serve more than a single pur-
pose. If crafted well, tests can act as the primary document for
existing system classes. In TDD, each unit test defines a small
bit of specification built into the system. The complete set of
tests for a test-driven class describes all of the capabilities sup-
ported by that class.

Before tests are committed, some form of review is required
to ensure that they provide this documentation capability.
Other developers must be able to read and comprehend the
tests. An ad hoc review process can work: Simply ask another
developer to spend a few minutes reading each of the newly
created tests. If they are unable to comprehend the test name,
its steps, or its goals, then the tests fail review and must be
improved before checking them in. Pairing is another form of

review that can help ensure tests are eminently readable, but
even if you’re pairing, it’s still best to get a third opinion from
someone who wasn’t intimately involved with test creation.

Improved design quality and living documentation are two
of the most significant achievable benefits of TDD. As such, it
is essential that the team achieve these goals, lest their lacking
serve as a deterrent. Some form of software review is required.
The practice of pair programming can represent a large por-
tion of the review process.

Education
As indicated at the outset of this article, lack of proper train-
ing can lead to poor TDD practice, which can destroy any
possibility for achieving its potential benefits. A primary fo-
cus of training must be on these benefits, otherwise students
will have little clue that they can achieve them. Training must
point out pitfalls for developers to avoid, such as the high
future cost of inadequate refactoring.

It is possible for a team to become proficient at TDD without
formal training. Pairing with experienced practitioners is one
avenue. Another is to seek highly regarded print or online ma-
terials, including books, articles, tutorials, and how-to videos.
Choosing these avenues demands that your team has follow-
on support in the form of a skilled coach or other individuals
on the team with prior, trustworthy experience in TDD.

Sustaining TDD (or for that matter, any sophisticated prac-
tice) over time requires a culture that embraces continual
learning. Team members must be willing to seek more knowl-
edge, communicate frequently, and to socialize code and tests,
in order to combat the unending challenges associated with
software development.

Coaching or prior experience
To do anything well, you must know what “well” looks like.
With respect to TDD, there are many possible shapes that the
resultant unit tests and code can look like. There are sever-
al nuances about TDD not necessarily obvious to beginning
practitioners. While it’s possible for teams to self-organize and
succeed by determining their own practices, principles, and
destiny, success is exceptionally more likely with the benefit
of experience – either a coach dedicated to the team, or exist-
ing team members who can guide the rest of the team. An un-
coached team may eventually figure things out, but more likely
will abandon TDD in frustration without a guiding hand to
keep them from completely unnecessary struggles and pitfalls.

Over time, teams need to seek the unbiased opinion of ex-
ternal folks. Any stable, small group of individuals tend to
get into a rut that can be difficult for themselves to recognize.
An external observer can often spot the challenges that team
members cannot see from within the rut.

Discipline
TDD is a skill that requires dedication to learn and master.
Students and practitioners must view TDD as a discipline.
Regular practice becomes important, as is collaborative ret-
rospection. The concept of shu-ha-ri [2] can help developers
understand where they are at in the learning process, which
in turn can help them understand what actions and decisions

are appropriate. Even at ri, the mastery level, students must
continue to learn and practice. Most developers struggle with
TDD initially. A significant first hurdle for each developer to
jump over is a “light bulb moment,” where the meaning and
value of TDD suddenly becomes clear. This hurdle is different
for each developer, and might take anywhere from a couple of
days to a few months for an individual to overcome.

Standards
While the definition of TDD may seem clear, its practice in
the wild suggests that many developers misinterpret its gen-
eral purpose and technique. Fundamental discussions about
TDD’s goals and techniques can bring development to a
standstill if debates are allowed to continue endlessly. The
existence of many legitimate variant TDD techniques compli-
cates the discussions even further.

The simple things, too, must be resolved, lest the team waste
infinite numbers of small or large seconds each day: How do
we name tests? What testing tool are we using? Where do the
tests go? How are they reviewed? How do we name helper
methods? Where do we put common object creation? What
mock tools are we using? When do we mock? And so on.

Ensure that everyone has received proper education, and
then ensure everyone is on the same page. You’ll survive a
small degree of variance, but significant disagreement will
lead to rework, disillusionment, and sometimes to abandon-
ment of the TDD effort.

As with all standards, revisit the TDD standards your team
derives on a regular basis and discuss them ad hoc as needed.
Standards become yet another part of the agile process: incre-
ment, reflect, and iterate. An initial increment of your TDD
standards should take no longer than an hour to derive.

Documentation and test quality
Without developers seeking to understand and navigate the
system by reading the tests produced by TDD, the earlier-
recommended review of the unit tests themselves is of little
value. With each newly encountered class in an object-ori-
ented system, developers should first review the existing tests.
Programmers should be able to read the list of test names and
have a good understanding of the behaviors supoprted by a
given class. Each step in the test should be clear, allowing
readers to readily understand the goal verified by the test as
well as understand the steps taken to accomplish that goal. A
focus on test abstraction – the emphasis of the essential and
the suppression of the irrelevant in each test – can help bring
the test suite up to these high but reasonable standards [3].

In one Fortune 500 organization, developers quickly grew
their coverage numbers by copying and pasting tests that were
lengthy and obscure to begin with. The meaning of any given
test was rarely very clear, and understanding one fully of-
ten took extensive time. Subsequent significant changes to a
few key data structures rippled throughout a large number of
these difficult tests. Some tests no longer compiled, and some
tests now failed. Rather than improve the quality of these
problematic tests, the developers began commenting out the
tests that no longer compiled, and began ignoring the negative
results of the test that no longer passed.

The problem with ignoring tests that no longer compile is
that the return value on the investment to produce them is
now zero. The problem with ignoring the results of tests that
now fail is worse: the return value now becomes negative. A
team might remember that one or two failing tests are “sup-
posed to fail,” because “they’re currently broken.” But as the
number of failing tests swells to ten, a few dozen, or over a
hundred (the amount in the Fortune 500 company), develop-
ers have no quick and simple way to determine why a test is
failing: Is it being ignored, is it another problematic tests, or
is it a new, real problem with the system itself?

Tests are monitors of your system health, but only if they
are maintained diligently as living documents that accurately
describe aspects of system behavior.

Design and refactoring
A key claim by practitioners is that employing TDD can assist
in producing a high-quality design. There are two main rea-
sons for the improved design. First, the interest in test-driving
an application leads to a design that is easily testable. Michael
Feathers asserts that there is “deep synergy between testabil-
ity and design.” [4] Testability demands high cohesion and
low coupling, two primary indicators of a good design.

Second, the extensive code coverage generated by TDD al-
lows continual factoring of the code to sustain a clean design.
Developers are urged to ensure that with the introduction of
each new small bit of functionality, the system retains the sim-
plest and cleanest possible design. This continual incremen-
tal attentiveness to design quality is impractical without the
rapid feedback of tests created via TDD.

The rapid cycles in iterative-incremental development ex-
acerbate the design concern in software. Business needs can
change dramatically each iteration, with new functionality
that was never before considered. Teams have found them-
selves going from zero code to a sizable mess within a matter
of weeks because they did not refactor continually and suf-
ficiently. The design must be kept clean in order to continue
introducing new features at a reasonable cost.

From the standpoint of sustaining TDD, a design that de-
grades increases the difficulty of writing tests, presenting yet
another barrier to successful adoption.

Continuous Integration
A continuous integration server and agreed-on process for
checking are essential for every software development team.
The CI system is far more valuable, however, if it also runs a
test suite for continual system verification. Developers must
treat build failures reported by the CI server with a “stop-
the-line” mentality: If the tests fail, the health of the system is
in question. Before developers introduce any more code into
a questionable environment, the team must investigate and
fix the production system, tests, or build system itself before
proceeding. In the absence of a CI system, the visibility of
the TDD effort is significantly diminished, potentially to the
point where only a few individuals care about the results they
demonstrate. Sustaining TDD becomes far easier if the team
embraces the tests and depends on them to indicate a key in-
dicator of system health.

Coverage metrics
It would be ideal if a single, automatable metric could indi-
cate whether or not a team was practicing TDD properly.
Code coverage metrics comes closest, indicating whether or
not lines of code are exercised when tests execute. Coverage
metrics can definitively tell you that a team is not practic-
ing TDD – low coverage means that there is far more code
than tests that “drive in” that code. High coverage numbers,
however, might simply mean that lines of code are getting
exercised, not verified.

Teams doing TDD find that their resulting coverage numbers
are usually in the 90% to 99% range. Coverage of 100% is
unrealistic for a few reasons, some relating to the language and
frameworks used, some relating to use of mechanisms to allow
unit testing against code depending on external resources.

In any case, code coverage metrics are better viewed as an
educational tool for use by developers only. Specifying a tar-
get goal for code coverage can have an extremely damaging
side effect: developers will do whatever it takes to meet the
goal, to the point of creating completely unmaintainable and
useless tests. This situation was observed at one Fortune 500
company, where a VP mandated a certain code coverage per-
centage increase per iteration. Developers hastily crafted tests
by copy-and-pasting long, unwieldy tests that verified little.

Outside of looking for improving trends for customer-fac-
ing metrics (satisfaction, delivery rate, and defects), the best
answer as to whether or not developers are properly practicing
TDD can come only from developers themselves. Experienced
practitioners can quickly determine problems by examining
the tests and production code. Metrics such as code coverage
and cyclomatic complexity can help point the team to trouble
spots, but they alone can not indicate that TDD is being done
well. Only regular review of tests by the team can verify their
quality.

Other tests
Unit tests alone are insufficient. By definition, they attempt
to test code as isolated units. While it’s important that you
can verify the individual units of code that you create in your
system, it’s even more important that the units work together
to meet the needs of the business.

In order to sustain TDD, you must invest also in such high-
level tests. While you might survive on unit tests alone, it’s
more than likely that at some point you’ll begin delivering
defects because you haven’t taken the time to ensure that the
code integrates properly to fulfill customer needs.

Erik G. H. Meade, of EGHM Inc., reports that you can
get away with unit tests only – i.e. no functional tests – for
about six months. “After six months without functional tests,
functionality begins to start breaking,” says Meade. Catching
up and adding tests after the fact is always a challenge, and
moreso a challenge because the system hasn’t been designed
to be “functional test friendly,” as Meade puts it.

If your team gets to that “catch-up” point, your efforts at
TDD are at risk: Managers will perceive that your investment
in TDD was insufficient to prevent the defects that functional
tests might have caught. They will sometimes insist that your
team spend their time elsewhere.

Fast tests
Unit tests produced by TDD must provide feedback in a rea-
sonable time. It is possible to run the thousands of tests that
cover a moderately-sized system in a few seconds, but only if
they are not dependent on slower elements in the system (the
primary culprit: database calls). Minimally, developers must
run these tests prior to check-in, and optimally, developers
should run these tests with every small change. If the unit tests
run slowly, however, most developers will not wait the exces-
sive time it takes to run all of them, which reduces their value
in terms of providing rapid feedback. It becomes more dif-
ficult to practice TDD in such an environment: the sweet spot
for TDD is when a developer can take a few seconds for every
tiny change to the system. An extraordinarily slow test suite
will delay check-ins to the continuous integration environ-
ment, further slowing the project: in general, the longer the
feedback from introduction of an integration problem to its
discovery, the more effort required to decipher the problem.

Conclusions
All of these challenges to success with TDD beg questions: Is
TDD more effort than it’s worth? Is it too difficult to expect
developers to do? These questions can only be answered defi-
nitely by your team. Many teams have been wildly successful
using TDD, many have failed. To answer the second ques-
tion, developers with the proper aptitude for learning and a
positive aptitude about wanting to learn can easily learn and
ingrain TDD.

Is it more effort than it’s worth? Here’s a recap of the ben-
efits touted in the first paragraph of this article: significantly
fewer defects, dramatically reduced size, tests that improve
developer understanding of system behaviors, more decou-
pled/cohesive designs, cleaner code, and the ability to change
the system safely and rapidly. Experienced TDD practition-
ers, including this article’s author, will claim that TDD helps
them go faster than they would without tests.

Proper application of TDD will increase the return on your
investment over time. Following the guidelines in this article
will help you achieve and sustain success with TDD. Is your
team up for the challenge?

Jeff Langr is a veteran software developer with nearly three decades of
passion and experience. He's the author of three books, including Agile
in a Flash (with Tim Ottinger, published January 2011) and Agile Java.
Langr has written over 100 articles on software development. He runs
Langr Software Solutions (http://langrsoft.com), a source for agile coach-

ing and training, from Colorado Springs.

References

[1] The phrase “test-driven development” can be used in the context of acceptance
tests, a practice sometimes referred to as acceptance test-driven development,
or ATDD. References to TDD in this article regard only the developer practice.

[2] http://pragprog.com/magazines/2010-11/shu-ha-ri

[3] http://pragprog.com/magazines/2011-04/test-abstraction

[4] http://michaelfeathers.typepad.com/michael_feathers_blog/2007/09/the-
deep-synerg.html

#13

TM

